Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Best-Arm Identification Methods for Tail-Risk Measures (2008.07606v3)

Published 17 Aug 2020 in cs.LG and stat.ML

Abstract: Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are heavy-tailed. We use the multi-armed bandit best-arm identification framework and consider the problem of identifying the arm from amongst finitely many that has the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures the risk-return trade-off common in finance. Our main contribution is an optimal $\delta$-correct algorithm that acts on general arms, including heavy-tailed distributions, and matches the lower bound on the expected number of samples needed, asymptotically (as $\delta$ approaches $0$). The algorithm requires solving a non-convex optimization problem in the space of probability measures, that requires delicate analysis. En-route, we develop new non-asymptotic empirical likelihood-based concentration inequalities for tail-risk measures which are tighter than those for popular truncation-based empirical estimators.

Citations (15)

Summary

We haven't generated a summary for this paper yet.