Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Naamapadam: A Large-Scale Named Entity Annotated Data for Indic Languages (2212.10168v2)

Published 20 Dec 2022 in cs.CL

Abstract: We present, Naamapadam, the largest publicly available Named Entity Recognition (NER) dataset for the 11 major Indian languages from two language families. The dataset contains more than 400k sentences annotated with a total of at least 100k entities from three standard entity categories (Person, Location, and, Organization) for 9 out of the 11 languages. The training dataset has been automatically created from the Samanantar parallel corpus by projecting automatically tagged entities from an English sentence to the corresponding Indian language translation. We also create manually annotated testsets for 9 languages. We demonstrate the utility of the obtained dataset on the Naamapadam-test dataset. We also release IndicNER, a multilingual IndicBERT model fine-tuned on Naamapadam training set. IndicNER achieves an F1 score of more than $80$ for $7$ out of $9$ test languages. The dataset and models are available under open-source licences at https://ai4bharat.iitm.ac.in/naamapadam.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.