Loaded Q
3.7–5 × 10⁶ (η=0.5)
∼ \sim ∼ 10 ×106< / s u p > ( η ≈ 0.25 ) < / t d > < / t r > < t r > < t d > F S R ( </sup> (η≈0.25)</td>
</tr>
<tr>
<td>FSR ( < / s u p > ( η ≈ 0.25 ) < / t d >< / t r >< t r >< t d > FSR ( D_1/2\pi) < / t d > < t d > 202 G H z < / t d > < t d > 184 G H z < / t d > < / t r > < t r > < t d > G V D ( )</td>
<td>202 GHz</td>
<td>184 GHz</td>
</tr>
<tr>
<td>GVD ( ) < / t d >< t d > 202 G Hz < / t d >< t d > 184 G Hz < / t d >< / t r >< t r >< t d > G V D ( D_2/2\pi) < / t d > < t d > – 39.4 M H z < / t d > < t d > – 32.6 M H z < / t d > < / t r > < / t b o d y > < / t a b l e > < / d i v > < p > T h e n o r m a l G V D r e g i m e ( )</td>
<td>–39.4 MHz</td>
<td>–32.6 MHz</td>
</tr>
</tbody></table></div>
<p>The normal GVD regime ( ) < / t d >< t d > –39.4 M Hz < / t d >< t d > –32.6 M Hz < / t d >< / t r >< / t b o d y >< / t ab l e >< / d i v >< p > T h e n or ma lG V Dre g im e ( \beta_2>0i n t h i s s i g n c o n v e n t i o n , in this sign convention, in t hi ss i g n co n v e n t i o n , D_2<0) i s c e n t r a l t o S t o k e s m i c r o c o m b g e n e r a t i o n . T h e o b s e r v e d s t i m u l a t e d R a m a n s h i f t i s ) is central to Stokes microcomb generation. The observed stimulated Raman shift is ) i sce n t r a lt o St o k es mi croco mb g e n er a t i o n . T h eo b ser v e d s t im u l a t e d R aman s hi f t i s \Omega_R/2\pi \approx 9 T H z , w i t h a b a n d w i d t h o f a p p r o x i m a t e l y 5 T H z . < / p > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ m e a n − f i e l d − m o d e l − l u g i a t o − l e f e v e r − e q u a t i o n − w i t h − r a m a n − t e r m ′ > 2. M e a n − F i e l d M o d e l : L u g i a t o – L e f e v e r E q u a t i o n w i t h R a m a n T e r m < / h 2 > < p > T h e d y n a m i c s o f S t o k e s m i c r o c o m b s a r e g o v e r n e d b y a m e a n − f i e l d m o d e l e x t e n d i n g t h e L u g i a t o – L e f e v e r e q u a t i o n ( L L E ) t o i n c l u d e R a m a n i n t e r a c t i o n s . T h e i n t r a c a v i t y e n v e l o p e THz, with a bandwidth of approximately 5 THz.</p>
<h2 class='paper-heading' id='mean-field-model-lugiato-lefever-equation-with-raman-term'>2. Mean-Field Model: Lugiato–Lefever Equation with Raman Term</h2>
<p>The dynamics of Stokes microcombs are governed by a mean-field model extending the Lugiato–Lefever equation (LLE) to include Raman interactions. The intracavity envelope T Hz , w i t haban d w i d t h o f a pp ro x ima t e l y 5 T Hz . < / p >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ m e an − f i e l d − m o d e l − l ug ia t o − l e f e v er − e q u a t i o n − w i t h − r aman − t er m ′ > 2. M e an − F i e l d M o d e l : Lug ia t o – L e f e v er Eq u a t i o n w i t h R aman T er m < / h 2 >< p > T h e d y nami cso f St o k es mi croco mb s a re g o v er n e d b y am e an − f i e l d m o d e l e x t e n d in g t h e Lug ia t o – L e f e v ere q u a t i o n ( LL E ) t o in c l u d e R amanin t er a c t i o n s . T h e in t r a c a v i t ye n v e l o p e E(\tau,t), w h e r e , where , w h ere \taur e p r e s e n t s t h e f a s t t i m e a n d represents the fast time and re p rese n t s t h e f a s tt im e an d tt h e s l o w t i m e , i s d e s c r i b e d b y : < / p > < p > the slow time, is described by:</p>
<p> t h es l o wt im e , i s d escr ib e d b y :< / p >< p > \frac{\partial E}{\partial t}
=\left[-\alpha - i\delta_0 + i\frac{\beta_2}{2}\frac{\partial^2}{\partial \tau^2} + i\gamma|E|^2\right]E
+ F
+ i\,\Gamma_R\,E\;\otimes\;h_R(\tau)\,.< / p > < p > H e r e : < / p > < u l > < l i > </p>
<p>Here:</p>
<ul>
<li> < / p >< p > Here :< / p >< u l >< l i > \alpha = \kappa/2: c a v i t y h a l f − l i n e w i d t h , < / l i > < l i > : cavity half-linewidth,</li>
<li> : c a v i t y ha l f − l in e w i d t h , < / l i >< l i > \delta_0 = \omega_p-\omega_0: p u m p – r e s o n a n c e d e t u n i n g , < / l i > < l i > : pump–resonance detuning,</li>
<li> : p u m p – reso nan ce d e t u nin g , < / l i >< l i > \beta_2: G V D c o e f f i c i e n t ( n o r m a l i n t h e s e e x p e r i m e n t s ) , < / l i > < l i > : GVD coefficient (normal in these experiments),</li>
<li> : G V Dcoe ff i c i e n t ( n or ma l in t h esee x p er im e n t s ) , < / l i >< l i > \gamma = n_2\omega_0/(c A_\text{eff}): K e r r n o n l i n e a r c o e f f i c i e n t , < / l i > < l i > : Kerr nonlinear coefficient,</li>
<li> : Kerr n o n l in e a rcoe ff i c i e n t , < / l i >< l i > F = \sqrt{\kappa_c P_\text{in}/(\hbar\omega_0)}: p u m p a m p l i t u d e , < / l i > < l i > : pump amplitude,</li>
<li> : p u m p am pl i t u d e , < / l i >< l i > \Gamma_R: R a m a n i n d e x p e r t u r b a t i o n p a r a m e t e r , < / l i > < l i > : Raman index perturbation parameter,</li>
<li> : R amanin d e x p er t u r ba t i o n p a r am e t er , < / l i >< l i > h_R(\tau): R a m a n r e s p o n s e f u n c t i o n , t y p i c a l l y : Raman response function, typically : R aman res p o n se f u n c t i o n , t y p i c a ll y H(\tau)\,(\tau_1^{-2}\,\tau e^{-\tau/\tau_2})w i t h with w i t h \tau_1 \approx 12.2 f s , fs, f s , \tau_2 \approx 32 f s . < / l i > < / u l > < p > T h i s f o r m a l i s m c a p t u r e s t h e c r i t i c a l i n t e r p l a y b e t w e e n i n s t a n t a n e o u s K e r r a n d d e l a y e d R a m a n n o n l i n e a r i t i e s , e n a b l i n g a n a l y s i s o f b o t h K e r r − a n d R a m a n − d o m i n a t e d c o m b g e n e r a t i o n a n d t r a n s i t i o n p h e n o m e n a s u c h a s p l a t i c o n f o r m a t i o n . < / p > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ e x p e r i m e n t a l − p u m p − s c h e m e s − a n d − t h r e s h o l d − p h e n o m e n a ′ > 3. E x p e r i m e n t a l P u m p S c h e m e s a n d T h r e s h o l d P h e n o m e n a < / h 2 > < p > T w o p r i n c i p a l e x p e r i m e n t a l p u m p c o n f i g u r a t i o n s a r e d e p l o y e d : < / p > < o l > < l i > < s t r o n g > T u n a b l e e x t e r n a l − c a v i t y l a s e r ( E C L ) w i t h i s o l a t o r a n d E D F A : < / s t r o n g > L e n s e d − f i b e r c o u p l e d t o c h i p , fs.</li>
</ul>
<p>This formalism captures the critical interplay between instantaneous Kerr and delayed Raman nonlinearities, enabling analysis of both Kerr- and Raman-dominated comb generation and transition phenomena such as platicon formation.</p>
<h2 class='paper-heading' id='experimental-pump-schemes-and-threshold-phenomena'>3. Experimental Pump Schemes and Threshold Phenomena</h2>
<p>Two principal experimental pump configurations are deployed:</p>
<ol>
<li><strong>Tunable external-cavity laser (ECL) with isolator and EDFA:</strong> Lensed-fiber coupled to chip, f s . < / l i >< / u l >< p > T hi s f or ma l i s m c a pt u res t h ecr i t i c a l in t er pl a y b e tw ee nin s t an t an eo u sKerr an dd e l a ye d R amann o n l in e a r i t i es , e nab l in g ana l ys i so f b o t h Kerr − an d R aman − d o mina t e d co mb g e n er a t i o nan d t r an s i t i o n p h e n o m e na s u c ha s pl a t i co n f or ma t i o n . < / p >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ e x p er im e n t a l − p u m p − sc h e m es − an d − t h res h o l d − p h e n o m e n a ′ > 3. E x p er im e n t a lP u m pS c h e m es an d T h res h o l d P h e n o m e na < / h 2 >< p > Tw o p r in c i p a l e x p er im e n t a lp u m p co n f i gu r a t i o n s a re d e pl oye d :< / p >< o l >< l i >< s t ro n g > T u nab l ee x t er na l − c a v i t y l a ser ( EC L ) w i t hi so l a t or an d E D F A :< / s t ro n g > L e n se d − f ib erco u pl e d t oc hi p , P_\text{in}c o n t r o l l a b l e f r o m 30 – 90 m W . P u m p w a v e l e n g t h i s r e d − d e t u n e d a n d s w e p t a c r o s s r e s o n a n c e . S t o k e s c o m b o n s e t o c c u r s a t controllable from 30–90 mW. Pump wavelength is red-detuned and swept across resonance. Stokes comb onset occurs at co n t ro ll ab l e f ro m 30–90 mW . P u m pw a v e l e n g t hi sre d − d e t u n e d an d s w e pt a crossreso nan ce . St o k esco mb o n se t occ u rs a t P_\text{in} \approx 5– 9 m W ( f i r s t S t o k e s a t 1601 – 1663 n m f o r p u m p 1520 – 1570 n m ) , w i t h c a s c a d e d S t o k e s c o m b s f o r m i n g f o r –9 mW (first Stokes at 1601–1663 nm for pump 1520–1570 nm), with cascaded Stokes combs forming for –9 mW ( f i rs tSt o k es a t 1601–1663 nm f or p u m p 1520–1570 nm ) , w i t h c a sc a d e d St o k esco mb s f or min g f or P_\text{in} \approx 14– 60 m W a n d s p a n n i n g –60 mW and spanning –60 mWan d s p annin g >100 n m . < / l i > < l i > < s t r o n g > S e l f − i n j e c t i o n − l o c k e d ( S I L ) d i s t r i b u t e d − f e e d b a c k ( D F B ) d i o d e l a s e r : < / s t r o n g > nm.</li>
<li><strong>Self-injection-locked (SIL) distributed-feedback (DFB) diode laser:</strong> nm . < / l i >< l i >< s t ro n g > S e l f − inj ec t i o n − l oc k e d ( S I L ) d i s t r ib u t e d − f ee d ba c k ( D FB ) d i o d e l a ser :< / s t ro n g > \lambda \approx 1546 n m , b u t t − c o u p l e d t o c h i p ( n o i s o l a t o r ) , w i t h o n − c h i p nm, butt-coupled to chip (no isolator), with on-chip nm , b u tt − co u pl e d t oc hi p ( n o i so l a t or ) , w i t h o n − c hi p P_\text{in} \approx 6– 36 m W . T h e S I L c o n f i g u r a t i o n s t a b i l i z e s l a s e r f r e q u e n c y a n d d e t u n i n g v i a b a c k − r e f l e c t i o n p h a s e . K e r r o r R a m a n c o m b s t a t e s a r e c o n t r o l l a b l e b y v a r y i n g t h e l o c k i n g p h a s e ( i . e . , l a s e r – c h i p s e p a r a t i o n ) . < / l i > < / o l > < p > T h e s e m e t h o d s p r o v i d e i n s i t u t u n a b i l i t y o f t h e n o n l i n e a r r e g i m e , e n a b l i n g d e t e r m i n i s t i c a c c e s s t o e i t h e r p r e d o m i n a n t l y K e r r − o r R a m a n − d r i v e n m i c r o c o m b s t a t e s . < / p > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ c o m b − s p e c t r a − t e m p o r a l − r e g i m e s − a n d − p l a t i c o n − g e n e r a t i o n ′ > 4. C o m b S p e c t r a , T e m p o r a l R e g i m e s , a n d P l a t i c o n G e n e r a t i o n < / h 2 > < p > T h e m i c r o r e s o n a t o r s u p p o r t s d i s t i n c t i v e c o m b r e g i m e s c o n t i n g e n t o n p u m p p a r a m e t e r s a n d d e t u n i n g : < / p > < u l > < l i > < s t r o n g > P r e d o m i n a n t l y R a m a n c o m b : < / s t r o n g > A c h i e v e d v i a E C L s c a n ( e . g . , p u m p –36 mW. The SIL configuration stabilizes laser frequency and detuning via back-reflection phase. Kerr or Raman comb states are controllable by varying the locking phase (i.e., laser–chip separation).</li>
</ol>
<p>These methods provide in situ tunability of the nonlinear regime, enabling deterministic access to either predominantly Kerr- or Raman-driven microcomb states.</p>
<h2 class='paper-heading' id='comb-spectra-temporal-regimes-and-platicon-generation'>4. Comb Spectra, Temporal Regimes, and Platicon Generation</h2>
<p>The microresonator supports distinctive comb regimes contingent on pump parameters and detuning:</p>
<ul>
<li><strong>Predominantly Raman comb:</strong> Achieved via ECL scan (e.g., pump –36 mW . T h e S I L co n f i gu r a t i o n s t abi l i zes l a ser f re q u e n cy an dd e t u nin gv iaba c k − re f l ec t i o n p ha se . Kerror R aman co mb s t a t es a reco n t ro ll ab l e b y v a ry in g t h e l oc kin g p ha se ( i . e . , l a ser – c hi p se p a r a t i o n ) . < / l i >< / o l >< p > T h ese m e t h o d s p ro v i d e in s i t u t u nabi l i t yo f t h e n o n l in e a rre g im e , e nab l in g d e t er mini s t i c a ccess t oe i t h er p re d o minan tl yKerr − or R aman − d r i v e nmi croco mb s t a t es . < / p >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ co mb − s p ec t r a − t e m p or a l − re g im es − an d − pl a t i co n − g e n er a t i o n ′ > 4. C o mb Sp ec t r a , T e m p or a lR e g im es , an d Pl a t i co n G e n er a t i o n < / h 2 >< p > T h e mi croreso na t ors u pp or t s d i s t in c t i v eco mb re g im esco n t in g e n t o n p u m pp a r am e t ers an dd e t u nin g :< / p >< u l >< l i >< s t ro n g > P re d o minan tl y R aman co mb :< / s t ro n g > A c hi e v e d v ia EC L sc an ( e . g . , p u m p \lambda_p=1564 n m , nm, nm , P_\text{in}=60 m W ) . T h e f i r s t S t o k e s l i n e a p p e a r s a t 1640 n m ( 9 T H z s h i f t ) . C o m b F S R i s mW). The first Stokes line appears at 1640 nm (9 THz shift). Comb FSR is mW ) . T h e f i rs tSt o k es l in e a pp e a rs a t 1640 nm ( 9 T Hzs hi f t ) . C o mb FSR i s \sim$202 GHz; span exceeds 100 nm. Stokes line power is $-5 d B t o dB to d Bt o -8 d B r e l a t i v e t o p u m p . A w e a k K e r r p l a t i c o n r e m a i n s a t t h e p u m p , dB relative to pump. A weak Kerr platicon remains at the pump, d B re l a t i v e t o p u m p . A w e ak Kerr pl a t i co n re main s a tt h e p u m p , >30 d B b e l o w t h e p u m p l e v e l . < / l i > < l i > < s t r o n g > P r e d o m i n a n t l y K e r r c o m b : < / s t r o n g > A c h i e v e d u n d e r a p p r o p r i a t e S I L p h a s e . F S R i s a g a i n 202 G H z ; t h e s p e c t r u m e x h i b i t s a c h a r a c t e r i s t i c d a r k − p u l s e ( p l a t i c o n ) e n v e l o p e w i t h a s p e c t r a l d i p a t p u m p w a v e l e n g t h , s p a n n i n g dB below the pump level.</li>
<li><strong>Predominantly Kerr comb:</strong> Achieved under appropriate SIL phase. FSR is again 202 GHz; the spectrum exhibits a characteristic dark-pulse (platicon) envelope with a spectral dip at pump wavelength, spanning d B b e l o wt h e p u m pl e v e l . < / l i >< l i >< s t ro n g > P re d o minan tl yKerrco mb :< / s t ro n g > A c hi e v e d u n d er a pp ro p r ia t e S I L p ha se . FSR i s a g ain 202 G Hz ; t h es p ec t r u m e x hibi t s a c ha r a c t er i s t i c d a r k − p u l se ( pl a t i co n ) e n v e l o p e w i t ha s p ec t r a l d i p a tp u m pw a v e l e n g t h , s p annin g \sim$10 nm centered at 1546 nm, with no measurable Stokes content above 1600 nm.
Temporal profiles: Both Raman- and Kerr-platicons reconstructed numerically exhibit pulse durations $\tau_\text{pulse} \approx 3 p s , e a c h m a n i f e s t i n g a s i n t e n s i t y d i p s a g a i n s t a c o n t i n u o u s − w a v e ( c w ) b a c k g r o u n d . < / l i > < / u l > < p > P l a t i c o n f o r m a t i o n a t t h e S t o k e s f r e q u e n c y i s t h u s e x p e r i m e n t a l l y a n d n u m e r i c a l l y c o r r o b o r a t e d , w i t h s y n c h r o n i z a t i o n b e t w e e n p u m p a n d S t o k e s p l a t i c o n s i n f e r r e d f r o m b o t h s p e c t r a l a n d t e m p o r a l d a t a . < / p > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ n u m e r i c a l − s i m u l a t i o n s − a n d − s t a b i l i t y − o f − s t o k e s − m i c r o c o m b s ′ > 5. N u m e r i c a l S i m u l a t i o n s a n d S t a b i l i t y o f S t o k e s M i c r o c o m b s < / h 2 > < p > N u m e r i c a l a n a l y s i s e m p l o y s c o u p l e d − m o d e e q u a t i o n s f o r f o r w a r d a n d b a c k w a r d , p u m p a n d S t o k e s f i e l d s ( s e e E q s . ( 1 ) – ( 4 ) i n t h e o r i g i n a l w o r k ) . K e y n o r m a l i z e d p a r a m e t e r s i n c l u d e : < / p > < u l > < l i > D i m e n s i o n l e s s p u m p s t r e n g t h : ps, each manifesting as intensity dips against a continuous-wave (cw) background.</li>
</ul>
<p>Platicon formation at the Stokes frequency is thus experimentally and numerically corroborated, with synchronization between pump and Stokes platicons inferred from both spectral and temporal data.</p>
<h2 class='paper-heading' id='numerical-simulations-and-stability-of-stokes-microcombs'>5. Numerical Simulations and Stability of Stokes Microcombs</h2>
<p>Numerical analysis employs coupled-mode equations for forward and backward, pump and Stokes fields (see Eqs. (1)–(4) in the original work). Key normalized parameters include:</p>
<ul>
<li>Dimensionless pump strength: p s , e a c hmani f es t in g a s in t e n s i t y d i p s a g ain s t a co n t in u o u s − w a v e ( c w ) ba c k g ro u n d . < / l i >< / u l >< p > Pl a t i co n f or ma t i o na tt h e St o k es f re q u e n cy i s t h u se x p er im e n t a ll y an d n u m er i c a ll ycorro b or a t e d , w i t h sy n c h ro ni z a t i o nb e tw ee n p u m p an d St o k es pl a t i co n s in f erre df ro mb o t h s p ec t r a l an d t e m p or a l d a t a . < / p >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ n u m er i c a l − s im u l a t i o n s − an d − s t abi l i t y − o f − s t o k es − mi croco mb s ′ > 5. N u m er i c a lS im u l a t i o n s an d St abi l i t yo f St o k es M i croco mb s < / h 2 >< p > N u m er i c a l ana l ys i se m pl oysco u pl e d − m o d ee q u a t i o n s f or f or w a r d an d ba c k w a r d , p u m p an d St o k es f i e l d s ( see Eq s . ( 1 ) – ( 4 ) in t h eor i g ina lw or k ) . Key n or ma l i ze d p a r am e t ers in c l u d e :< / p >< u l >< l i > D im e n s i o n l ess p u m p s t re n g t h : f=3.5\ldots12< / l i > < l i > N o r m a l i z e d d i s p e r s i o n : </li>
<li>Normalized dispersion: < / l i >< l i > N or ma l i ze dd i s p ers i o n : D_2/\kappa \approx -0.2\ldots -0.1< / l i > < l i > R a m a n f r a c t i o n : </li>
<li>Raman fraction: < / l i >< l i > R aman f r a c t i o n : f_r \approx 0.18< / l i > < l i > S h o c k t i m e : </li>
<li>Shock time: < / l i >< l i > S h oc k t im e : \tau_r \approx 0.3< / l i > < l i > N o r m a l i z e d R a m a n g a i n : </li>
<li>Normalized Raman gain: < / l i >< l i > N or ma l i ze d R aman g ain : G_r \approx 0.38< / l i > < l i > C W / C C W c o u p l i n g : </li>
<li>CW/CCW coupling: < / l i >< l i > C W / CC W co u pl in g : \beta \approx 6< / l i > < / u l > < p > W i t h p e r i o d i c f a s t − t i m e b o u n d a r y c o n d i t i o n s , t h e s i m u l a t i o n s r e v e a l : < / p > < u l > < l i > S t o k e s s i d e b a n d s a p p e a r w i t h i n c r e a s i n g d e t u n i n g ( </li>
</ul>
<p>With periodic fast-time boundary conditions, the simulations reveal:</p>
<ul>
<li>Stokes sidebands appear with increasing detuning ( < / l i >< / u l >< p > Wi t h p er i o d i c f a s t − t im e b o u n d a ryco n d i t i o n s , t h es im u l a t i o n sre v e a l :< / p >< u l >< l i > St o k ess i d e ban d s a pp e a r w i t hin cre a s in g d e t u nin g ( \delta) , < / l i > < l i > P l a t i c o n s t e p s a t b o t h p u m p a n d S t o k e s f r e q u e n c i e s s y n c h r o n i z e f o r n o r m a l i z e d ),</li>
<li>Platicon steps at both pump and Stokes frequencies synchronize for normalized ) , < / l i >< l i > Pl a t i co n s t e p s a t b o t h p u m p an d St o k es f re q u e n c i essy n c h ro ni ze f or n or ma l i ze d \delta \approx 20, < / l i > < l i > S p e c t r a l s h a p e s a n d s p a n s ( ,</li>
<li>Spectral shapes and spans ( , < / l i >< l i > Sp ec t r a l s ha p es an d s p an s ( \Delta\lambda \sim 2 n m i n n o r m a l i z e d u n i t s ) c l o s e l y t r a c k e x p e r i m e n t s a f t e r r e s c a l i n g , < / l i > < l i > S t a b l e p l a t i c o n s t a t e s p e r s i s t o v e r d e t u n i n g i n t e r v a l s nm in normalized units) closely track experiments after rescaling,</li>
<li>Stable platicon states persist over detuning intervals nminn or ma l i ze d u ni t s ) c l ose l y t r a c k e x p er im e n t s a f t erresc a l in g , < / l i >< l i > St ab l e pl a t i co n s t a t es p ers i s t o v er d e t u nin g in t er v a l s \Delta\delta\approx 5; d i s a b l i n g R a m a n g a i n e l i m i n a t e s p l a t i c o n s e e d i n g — e s t a b l i s h i n g S R S a s c r i t i c a l f o r c o m b i n i t i a l i z a t i o n a n d s t a b i l i t y . < / l i > < / u l > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ r e g i m e − s w i t c h i n g − k e r r − r a m a n − c o n t r o l − v i a − i n j e c t i o n − l o c k i n g − p h a s e ′ > 6. R e g i m e S w i t c h i n g : K e r r – R a m a n C o n t r o l v i a I n j e c t i o n − L o c k i n g P h a s e < / h 2 > < p > R e g i m e s w i t c h i n g b e t w e e n K e r r − a n d R a m a n − d o m i n a n t c o m b o p e r a t i o n i s a c h i e v e d b y s u b − m i c r o m e t e r t u n i n g o f t h e S I L l a s e r – c h i p s e p a r a t i o n , i n f l u e n c i n g t h e S I L p h a s e ; disabling Raman gain eliminates platicon seeding—establishing SRS as critical for comb initialization and stability.</li>
</ul>
<h2 class='paper-heading' id='regime-switching-kerr-raman-control-via-injection-locking-phase'>6. Regime Switching: Kerr–Raman Control via Injection-Locking Phase</h2>
<p>Regime switching between Kerr- and Raman-dominant comb operation is achieved by sub-micrometer tuning of the SIL laser–chip separation, influencing the SIL phase ; d i s ab l in g R aman g ain e l imina t es pl a t i co n see d in g — es t ab l i s hin g SRS a scr i t i c a l f orco mbini t ia l i z a t i o nan d s t abi l i t y . < / l i >< / u l >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ re g im e − s w i t c hin g − k err − r aman − co n t ro l − v ia − inj ec t i o n − l oc kin g − p ha s e ′ > 6. R e g im e Sw i t c hin g : Kerr – R aman C o n t ro l v ia I nj ec t i o n − L oc kin g P ha se < / h 2 >< p > R e g im es w i t c hin g b e tw ee n Kerr − an d R aman − d o minan t co mb o p er a t i o ni s a c hi e v e d b ys u b − mi cro m e t er t u nin g o f t h e S I L l a ser – c hi p se p a r a t i o n , in f l u e n c in g t h e S I L p ha se \phi_\text{lock}a n d c o n s e q u e n t l y t h e e f f e c t i v e p u m p d e t u n i n g and consequently the effective pump detuning an d co n se q u e n tl y t h ee ff ec t i v e p u m p d e t u nin g \delta_\text{eff}. T h e o p e r a t i o n a l r e g i m e s a r e : < / p > < u l > < l i > . The operational regimes are:</p>
<ul>
<li> . T h eo p er a t i o na l re g im es a re :< / p >< u l >< l i > \phi_\text{lock} = \phi_\text{Kerr}: : : \delta_\text{eff}s e l e c t s t h e K e r r f o u r − w a v e m i x i n g r e g i m e , p r o d u c i n g p l a t i c o n a t t h e p u m p w i t h n o S t o k e s c o m b . < / l i > < l i > selects the Kerr four-wave mixing regime, producing platicon at the pump with no Stokes comb.</li>
<li> se l ec t s t h eKerr f o u r − w a v e mi x in g re g im e , p ro d u c in g pl a t i co na tt h e p u m pw i t hn o St o k esco mb . < / l i >< l i > \phi_\text{lock} = \phi_\text{Raman}: : : \delta_\text{eff}f a v o r s S R S t h r e s h o l d , y i e l d i n g a s t r o n g S t o k e s c o m b a n d s u p p r e s s i n g K e r r c o m b b y p u m p p o w e r d e p l e t i o n . < / l i > < / u l > < p > S w i t c h i n g d o e s n o t r e q u i r e e x t e r n a l m o d u l a t o r s , i n s t e a d r e l y i n g o n p r e c i s e m e c h a n i c a l a d j u s t m e n t o f t h e c h i p p o s i t i o n , y i e l d i n g a l l − e l e c t r o n i c c o n t r o l i n a m o n o l i t h i c p l a t f o r m . < / p > < h 2 c l a s s = ′ p a p e r − h e a d i n g ′ i d = ′ a p p l i c a t i o n s − a n d − i m p l i c a t i o n s ′ > 7. A p p l i c a t i o n s a n d I m p l i c a t i o n s < / h 2 > < p > S t o k e s m i c r o c o m b s i n S i 3 N 4 m i c r o r e s o n a t o r s e x t e n d t h e f u n c t i o n a l i t y o f i n t e g r a t e d p h o t o n i c f r e q u e n c y c o m b s i n s e v e r a l d o m a i n s : < / p > < u l > < l i > O n − c h i p R a m a n l a s e r s a n d c o m b s o u r c e s a t 1.6 – 1.7 µ m , r e l e v a n t f o r g a s s p e c t r o s c o p y ( e . g . , m e t h a n e a b s o r p t i o n f e a t u r e s ) , < / l i > < l i > B r o a d b a n d w a v e l e n g t h − d i v i s i o n m u l t i p l e x i n g ( W D M ) b e y o n d t h e C − b a n d , w i t h favors SRS threshold, yielding a strong Stokes comb and suppressing Kerr comb by pump power depletion.</li>
</ul>
<p>Switching does not require external modulators, instead relying on precise mechanical adjustment of the chip position, yielding all-electronic control in a monolithic platform.</p>
<h2 class='paper-heading' id='applications-and-implications'>7. Applications and Implications</h2>
<p>Stokes microcombs in Si₃N₄ microresonators extend the functionality of integrated photonic frequency combs in several domains:</p>
<ul>
<li>On-chip Raman lasers and comb sources at 1.6–1.7 µm, relevant for gas spectroscopy (e.g., methane absorption features),</li>
<li>Broadband wavelength-division multiplexing (WDM) beyond the C-band, with f a v ors SRSt h res h o l d , y i e l d in g a s t ro n g St o k esco mban d s u pp ress in g Kerrco mbb y p u m pp o w er d e pl e t i o n . < / l i >< / u l >< p > Sw i t c hin g d oes n o t re q u i ree x t er na l m o d u l a t ors , in s t e a d re l y in g o n p rec i se m ec hani c a l a d j u s t m e n t o f t h ec hi pp os i t i o n , y i e l d in g a ll − e l ec t ro ni cco n t ro l inam o n o l i t hi c pl a t f or m . < / p >< h 2 c l a ss = ′ p a p er − h e a d in g ′ i d = ′ a ppl i c a t i o n s − an d − im pl i c a t i o n s ′ > 7. A ppl i c a t i o n s an d I m pl i c a t i o n s < / h 2 >< p > St o k es mi croco mb s in S i 3 N 4 mi croreso na t orse x t e n d t h e f u n c t i o na l i t yo f in t e g r a t e d p h o t o ni c f re q u e n cyco mb s in se v er a l d o main s :< / p >< u l >< l i > O n − c hi pR aman l a sers an d co mb so u rces a t 1.6–1.7 µ m , re l e v an t f or g a ss p ec t rosco p y ( e . g . , m e t han e ab sor pt i o n f e a t u res ) , < / l i >< l i > B ro a d ban d w a v e l e n g t h − d i v i s i o nm u lt i pl e x in g ( W D M ) b eyo n d t h e C − ban d , w i t h >100$ nm comb span,
Dual-comb spectroscopy by simultaneous generation of pump and Stokes combs with locked repetition rates,
Integrated microwave photonics leveraging 200 GHz comb spacing for RF-generation and optical clocks,
Electrically reconfigurable, CMOS-compatible frequency comb sources without additional moving parts.
This suggests that the demonstrated method for regime control and platicon synchronization in Si₃N₄ microresonators establishes a foundational platform for advanced nonlinear photonic devices and new approaches to spectroscopic sensing, microwave photonics, and frequency synthesis.
Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Forward Email Streamline Icon: https://streamlinehq.com
Follow Topic
Get notified by email when new papers are published related to Stokes Microcombs in Silicon Nitride .
Lightbulb Streamline Icon: https://streamlinehq.com