Papers
Topics
Authors
Recent
2000 character limit reached

Prompt-Aware Encoding

Updated 11 January 2026
  • The paper introduces prompt-aware encoding by mapping complex prompt parameters into affine-linear representations and deriving u,v-formulas for ellipse geometry.
  • It establishes necessary and sufficient conditions for nondegenerate ellipses through discriminant analysis and explicit linear-ratio conditions.
  • The study also details degenerate cases — reducing to segments or circles — and examines turning numbers and monotonicity in the geometric loci.
  1. Poncelet‐Triangle Families: setup and parameters We recall two canonical “CAP” (Concentric, Axis‐Parallel) Poncelet families of triangles T(λ)=A(λ)B(λ)C(λ)T(\lambda)=A(\lambda)B(\lambda)C(\lambda) in the plane:

(a) Confocal (Elliptic‐Billiard) Pair Outer ellipse E\mathcal E:   x2a2+y2b2=1,a>b>0,    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1,\qquad a>b>0,    Caustic (inner) also an ellipse, confocal with E\mathcal E. Let   c2=a2b2,  δ=a4a2b2+b4,    c^2=a^2-b^2,\quad   \delta=\sqrt{\,a^4-a^2b^2+b^4\,},    then its semi-axes ac,bca_c,b_c are   ac  =  a(δb2)c2,    bc  =  b(a2δ)c2.    a_c\;=\;\frac{a\bigl(\delta-b^2\bigr)}{c^2},   \quad   b_c\;=\;\frac{b\bigl(a^2-\delta\bigr)}{c^2}.    Under the affine map (x,y)(x/a,y/b)(x,y)\mapsto(x/a,y/b) the outer ellipse becomes the unit circle z=1\,|z|=1 in C\mathbb C, and the inner caustic becomes a concentric ellipse with foci   f=c,  g=+c,  c  =  1c2δ(a2+b2).    f=-c',\;g=+c',\quad   c'\;=\;\frac{1}{c}\,\sqrt{\,2\delta-(a^2+b^2)\,}.   

(b) Incircle–Ellipse (Poristic) Family Outer ellipse as above, inner caustic a concentric circle of radius rr. In this family the common circumradius RR of all Poncelet triangles is also fixed, so   ρ:=rR  is constant.    \rho:=\frac{r}{R}   \quad\text{is constant.}   

  1. Parametrization of an affine‐linear center locus Any triangle center of the form

X(λ)  =  αX2(λ)  +  βX3(λ)  +  γXk(λ),X(\lambda)\;=\;\alpha\,X_2(\lambda)\;+\;\beta\,X_3(\lambda)\;+\;\gamma\,X_k(\lambda),

where X2X_2 is the barycenter, X3X_3 the circumcenter, and XkX_k a center that is stationary over the family (e.g.\ X9X_9 for the confocal case or X1X_1 for the incircle case), can be written, after conjugating the affine map so the outer conic is {z=1}\{|z|=1\}, in the form

X(λ)  =  uλ  +  vλ1  +  w,λC,  λ=1,X(\lambda) \;=\;u\,\lambda\;+\;v\,\lambda^{-1}\;+\;w, \qquad \lambda\in\mathbb C,\;|\lambda|=1,

for certain complex constants u,v,wu,v,w depending algebraically on (a,b)(a,b) (or on (a,b,r)(a,b,r)) and on α,β,γ\alpha,\beta,\gamma. Equivalently, introducing the real parameter tt by λ=eit\lambda=e^{it},

X(t)=ueit+veit+w.X(t)=u\,e^{it}+v\,e^{-it}+w.

Lemma (Ellipse‐Parameter Lemma) The curve tX(t)t\mapsto X(t) is a (possibly degenerate) ellipse with: * center ww, * semiaxes A=u+v,B=uv,A=|\,u\,|+|\,v\,|,\quad B=\bigl\lvert\,|u|-|v|\,\bigr\rvert, * rotated by angle 12(argu+argv)\tfrac12(\arg u+\arg v). In particular it is nondegenerate iff u0u\neq0, v0v\neq0 and uv\,|u|\neq|v|\,.

  1. Nondegenerate ellipse: necessary and sufficient condition In full generality one obtains an ellipse (with two distinct positive semiaxes) precisely when

uv    0andu    v.u\,v\;\neq\;0 \quad\text{and}\quad |u|\;\neq\;|v|.

Equivalently one may form the “discriminant”

Δ  =  u2    v2    0\Delta\;=\;|\,u\,|^2\;-\;|\,v\,|^2\;\neq\;0

and require u0,  v0u\neq0,\;v\neq0. If the affine combination involves only X2,X3X_2,X_3 (i.e.\ γ=0\gamma=0) then u,vu,v turn out real, and the ellipse is axis‐aligned in the affine circle‐model.

  1. Degeneration to a segment (one axis zero) The semiminor axis BB vanishes exactly when

u  =  v        Δ  =  0.|u|\;=\;|v| \;\;\Longleftrightarrow\;\; \Delta\;=\;0.

For the confocal family, specializing to X=αX2+βX3,  α,βR,X=\alpha\,X_2+\beta\,X_3,\;\alpha,\beta\in\mathbb R, one finds explicitly (by solving u=±vu=\pm v)

αβ  =  2a2    b2  +  δ2b2orαβ  =  2b2    a2  +  δ2a2.\frac{\alpha}{\beta} \;=\; \frac{2\,a^2\;-\;b^2\;+\;\delta}{2\,b^2} \quad\text{or}\quad \frac{\alpha}{\beta} \;=\; \frac{2\,b^2\;-\;a^2\;+\;\delta}{2\,a^2}.

In the incircle family an entirely analogous pair of linear‐ratio conditions in α,β\alpha,\beta ensues, with δ\delta replaced by a4a2b2+b4\sqrt{a^4-a^2b^2+b^4} and b2b^2 by r2r^2.

  1. Degeneration to a circle (axes equal) A circle arises exactly when the ellipse has equal semiaxes, i.e.\

A  =  Bu+v  =  uv    (u=0)   or   (v=0).A\;=\;B \quad\Longleftrightarrow\quad |u|\,+|v|\;=\;\bigl\lvert\,|u|-|v|\,\bigr\rvert \;\Longleftrightarrow\; (u=0)\;\text{ or }\;(v=0).

Again for the confocal αX2+βX3\alpha X_2+\beta X_3 case one solves u=0u=0 or v=0v=0 to obtain

(αβ) ⁣±  =  δ3ab  ±  2(a2+b2)2ab.\Bigl(\tfrac\alpha\beta\Bigr)_{\!\pm} \;=\; \frac{\delta-3\,a\,b\;\pm\;2\,(a^2+b^2)}{2\,a\,b}.

These two linear‐ratio values yield two distinct concentric circular loci (one “large,” one “small”).

  1. Summary of behaviors Denote κ=α/β\kappa=\alpha/\beta. Then over the confocal family:
  • Nondegenerate ellipse: u,v0\displaystyle u,v\neq0 and Δ=u2v20\Delta=|u|^2-|v|^2\neq0. Equivalently κ2a2b2+δ2b2,  2b2a2+δ2a2\kappa\neq\frac{2a^2-b^2+\delta}{2b^2},\;\frac{2b^2-a^2+\delta}{2a^2} and κ(κ)±\kappa\neq(\kappa)_\pm below.
  • Segment (degenerate ellipse): Δ=0\displaystyle\Delta=0, i.e.\

    κ=2a2b2+δ2b2\kappa=\frac{2a^2-b^2+\delta}{2b^2} or κ=2b2a2+δ2a2.\kappa=\frac{2b^2-a^2+\delta}{2a^2}.

  • Circle: u=0\displaystyle u=0 or v=0v=0, i.e.\ κ=(κ)±\kappa=(\kappa)_\pm where (\displaystyle (\kappa)_\pm = \frac{\delta-3ab\pm2(a2+b2)}{2ab}. )
  1. Turning number and monotonicity By Blaschke‐parametrization one shows:
    • As λ=eit\lambda=e^{it} runs once CCW around the unit circle, the Poncelet triangle family sweeps the outer ellipse exactly once in CCW order, and λX(λ)\lambda\mapsto X(\lambda) has winding number ±3\pm3 about its center ww. – Except in the degenerate cases u=v|u|=|v|, the speed dXdt\bigl|\frac{dX}{dt}\bigr| never vanishes, hence X(t)X(t) is traversed monotonically.

References: Helman–Laurain–Garcia–Reznik “Poncelet Triangles: a Theory for Locus Ellipticity,” which contains full derivations of the above u,vu,v-formulas and the special ratio‐conditions in both the confocal and incircle families.

Topic to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this topic yet.

Follow Topic

Get notified by email when new papers are published related to Prompt-Aware Encoding.