Papers
Topics
Authors
Recent
2000 character limit reached

Prompt-Aware Encoding

Updated 11 January 2026
  • The paper introduces prompt-aware encoding by mapping complex prompt parameters into affine-linear representations and deriving u,v-formulas for ellipse geometry.
  • It establishes necessary and sufficient conditions for nondegenerate ellipses through discriminant analysis and explicit linear-ratio conditions.
  • The study also details degenerate cases — reducing to segments or circles — and examines turning numbers and monotonicity in the geometric loci.
  1. Poncelet‐Triangle Families: setup and parameters We recall two canonical “CAP” (Concentric, Axis‐Parallel) Poncelet families of triangles T(λ)=A(λ)B(λ)C(λ)T(\lambda)=A(\lambda)B(\lambda)C(\lambda) in the plane:

(a) Confocal (Elliptic‐Billiard) Pair Outer ellipse E\mathcal E:   x2a2+y2b2=1,a>b>0,    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1,\qquad a>b>0,    Caustic (inner) also an ellipse, confocal with E\mathcal E. Let   c2=a2b2,  δ=a4a2b2+b4,    c^2=a^2-b^2,\quad   \delta=\sqrt{\,a^4-a^2b^2+b^4\,},    then its semi-axes ac,bca_c,b_c are   ac  =  a(δb2)c2,    bc  =  b(a2δ)c2.    a_c\;=\;\frac{a\bigl(\delta-b^2\bigr)}{c^2},   \quad   b_c\;=\;\frac{b\bigl(a^2-\delta\bigr)}{c^2}.    Under the affine map (x,y)(x/a,y/b)(x,y)\mapsto(x/a,y/b) the outer ellipse becomes the unit circle z=1\,|z|=1 in C\mathbb C, and the inner caustic becomes a concentric ellipse with foci   f=c,  g=+c,  c  =  1c2δ(a2+b2).    f=-c',\;g=+c',\quad   c'\;=\;\frac{1}{c}\,\sqrt{\,2\delta-(a^2+b^2)\,}.   

(b) Incircle–Ellipse (Poristic) Family Outer ellipse as above, inner caustic a concentric circle of radius rr. In this family the common circumradius RR of all Poncelet triangles is also fixed, so   ρ:=rR  is constant.    \rho:=\frac{r}{R}   \quad\text{is constant.}   

  1. Parametrization of an affine‐linear center locus Any triangle center of the form

X(λ)  =  αX2(λ)  +  βX3(λ)  +  γXk(λ),X(\lambda)\;=\;\alpha\,X_2(\lambda)\;+\;\beta\,X_3(\lambda)\;+\;\gamma\,X_k(\lambda),

where X2X_2 is the barycenter, X3X_3 the circumcenter, and XkX_k a center that is stationary over the family (e.g.\ X9X_9 for the confocal case or X1X_1 for the incircle case), can be written, after conjugating the affine map so the outer conic is {z=1}\{|z|=1\}, in the form

X(λ)  =  uλ  +  vλ1  +  w,λC,  λ=1,X(\lambda) \;=\;u\,\lambda\;+\;v\,\lambda^{-1}\;+\;w, \qquad \lambda\in\mathbb C,\;|\lambda|=1,

for certain complex constants u,v,wu,v,w depending algebraically on (a,b)(a,b) (or on (a,b,r)(a,b,r)) and on α,β,γ\alpha,\beta,\gamma. Equivalently, introducing the real parameter tt by λ=eit\lambda=e^{it},

X(t)=ueit+veit+w.X(t)=u\,e^{it}+v\,e^{-it}+w.

Lemma (Ellipse‐Parameter Lemma) The curve tX(t)t\mapsto X(t) is a (possibly degenerate) ellipse with: * center ww, * semiaxes A=u+v,B=uv,A=|\,u\,|+|\,v\,|,\quad B=\bigl\lvert\,|u|-|v|\,\bigr\rvert, * rotated by angle 12(argu+argv)\tfrac12(\arg u+\arg v). In particular it is nondegenerate iff u0u\neq0, v0v\neq0 and uv\,|u|\neq|v|\,.

  1. Nondegenerate ellipse: necessary and sufficient condition In full generality one obtains an ellipse (with two distinct positive semiaxes) precisely when

uv    0andu    v.u\,v\;\neq\;0 \quad\text{and}\quad |u|\;\neq\;|v|.

Equivalently one may form the “discriminant”

Δ  =  u2    v2    0\Delta\;=\;|\,u\,|^2\;-\;|\,v\,|^2\;\neq\;0

and require u0,  v0u\neq0,\;v\neq0. If the affine combination involves only X2,X3X_2,X_3 (i.e.\ γ=0\gamma=0) then u,vu,v turn out real, and the ellipse is axis‐aligned in the affine circle‐model.

  1. Degeneration to a segment (one axis zero) The semiminor axis BB vanishes exactly when

u  =  v        Δ  =  0.|u|\;=\;|v| \;\;\Longleftrightarrow\;\; \Delta\;=\;0.

For the confocal family, specializing to X=αX2+βX3,  α,βR,X=\alpha\,X_2+\beta\,X_3,\;\alpha,\beta\in\mathbb R, one finds explicitly (by solving u=±vu=\pm v)

αβ  =  2a2    b2  +  δ2b2orαβ  =  2b2    a2  +  δ2a2.\frac{\alpha}{\beta} \;=\; \frac{2\,a^2\;-\;b^2\;+\;\delta}{2\,b^2} \quad\text{or}\quad \frac{\alpha}{\beta} \;=\; \frac{2\,b^2\;-\;a^2\;+\;\delta}{2\,a^2}.

In the incircle family an entirely analogous pair of linear‐ratio conditions in α,β\alpha,\beta ensues, with δ\delta replaced by a4a2b2+b4\sqrt{a^4-a^2b^2+b^4} and b2b^2 by r2r^2.

  1. Degeneration to a circle (axes equal) A circle arises exactly when the ellipse has equal semiaxes, i.e.\

A  =  Bu+v  =  uv    (u=0)   or   (v=0).A\;=\;B \quad\Longleftrightarrow\quad |u|\,+|v|\;=\;\bigl\lvert\,|u|-|v|\,\bigr\rvert \;\Longleftrightarrow\; (u=0)\;\text{ or }\;(v=0).

Again for the confocal αX2+βX3\alpha X_2+\beta X_3 case one solves u=0u=0 or v=0v=0 to obtain

(αβ) ⁣±  =  δ3ab  ±  2(a2+b2)2ab.\Bigl(\tfrac\alpha\beta\Bigr)_{\!\pm} \;=\; \frac{\delta-3\,a\,b\;\pm\;2\,(a^2+b^2)}{2\,a\,b}.

These two linear‐ratio values yield two distinct concentric circular loci (one “large,” one “small”).

  1. Summary of behaviors Denote κ=α/β\kappa=\alpha/\beta. Then over the confocal family:
  • Nondegenerate ellipse: u,v0\displaystyle u,v\neq0 and Δ=u2v20\Delta=|u|^2-|v|^2\neq0. Equivalently κ2a2b2+δ2b2,  2b2a2+δ2a2\kappa\neq\frac{2a^2-b^2+\delta}{2b^2},\;\frac{2b^2-a^2+\delta}{2a^2} and κ(κ)±\kappa\neq(\kappa)_\pm below.
  • Segment (degenerate ellipse): Δ=0\displaystyle\Delta=0, i.e.\

    κ=2a2b2+δ2b2\kappa=\frac{2a^2-b^2+\delta}{2b^2} or κ=2b2a2+δ2a2.\kappa=\frac{2b^2-a^2+\delta}{2a^2}.

  • Circle: u=0\displaystyle u=0 or v=0v=0, i.e.\ κ=(κ)±\kappa=(\kappa)_\pm where (\displaystyle (\kappa)_\pm = \frac{\delta-3ab\pm2(a2+b2)}{2ab}. )
  1. Turning number and monotonicity By Blaschke‐parametrization one shows:
    • As λ=eit\lambda=e^{it} runs once CCW around the unit circle, the Poncelet triangle family sweeps the outer ellipse exactly once in CCW order, and λX(λ)\lambda\mapsto X(\lambda) has winding number ±3\pm3 about its center ww. – Except in the degenerate cases u=v|u|=|v|, the speed dXdt\bigl|\frac{dX}{dt}\bigr| never vanishes, hence X(t)X(t) is traversed monotonically.

References: Helman–Laurain–Garcia–Reznik “Poncelet Triangles: a Theory for Locus Ellipticity,” which contains full derivations of the above u,vu,v-formulas and the special ratio‐conditions in both the confocal and incircle families.

Whiteboard

Topic to Video (Beta)

Follow Topic

Get notified by email when new papers are published related to Prompt-Aware Encoding.