Papers
Topics
Authors
Recent
2000 character limit reached

Ordered Fuzzy Inner Product

Updated 31 December 2025
  • Ordered fuzzy inner product is a rigorous extension of classical inner products, incorporating ordered intervals to embed fuzziness into similarity and geometric properties.
  • It preserves critical axioms such as positive definiteness, conjugate symmetry, and fuzzy Cauchy–Schwarz through two-sided interval bounds.
  • This construct underpins new approaches in fuzzy rough set theory and operator characterization, enhancing analysis in uncertain, graded environments.

The ordered fuzzy inner product is a mathematically rigorous construct extending the classical inner product to fuzzy contexts via ordered intervals and general fuzzy algebraic systems. It refines notions of similarity, norm, and geometric properties for vectors and sets by embedding fuzziness into the fundamental structure, thereby enabling robust analysis in uncertain and graded environments. This concept is central in recent axiomatic developments of fuzzy inner product spaces and L-valued rough set theory, introducing a new class of functional forms that preserve essential geometric inequalities and offer generalization over earlier models (Daraby et al., 24 Dec 2025, Li et al., 2024).

1. Formal Definition and Algebraic Foundation

Let a,bRa, b \in \mathbb{R}. An ordered interval [a,b]o[a,b]_o is defined by: [a,b]o={{xaxb},ab, {xbxa},a>b.[a,b]_o = \begin{cases} \{x\mid a\le x\le b\}, & a\le b, \ \{x\mid b\le x\le a\}, & a>b. \end{cases} The set of all such intervals is O(R)={[a,b]oa,bR}O(\mathbb{R}) = \{ [a,b]_o \mid a,b\in\mathbb{R} \}. On O(R)O(\mathbb{R}), coordinate‐wise operations are defined: [a,b]o[c,d]o=[a+c,b+d]o, [a,b]o[c,d]o=[ac,bd]o, [a,b]o[c,d]o=[ac,bd]o, k[a,b]o=[ka,kb]o(kR).\begin{aligned} [a,b]_o \oplus [c,d]_o &= [a+c,\, b+d]_o, \ [a,b]_o \ominus [c,d]_o &= [a-c,\, b-d]_o, \ [a,b]_o \odot [c,d]_o &= [a\,c,\, b\,d]_o, \ k\,[a,b]_o &= [k\,a,\, k\,b]_o \quad (k\in \mathbb{R}). \end{aligned} A natural partial order is given by: [a,b]o[c,d]omin{a,b}min{c,d}, max{a,b}max{c,d}.[a,b]_o \succeq [c,d]_o \quad \Longleftrightarrow \quad \min\{a,b\}\ge\min\{c,d\},\ \max\{a,b\}\ge\max\{c,d\}. Within an L-universe framework, with XX a nonempty crisp set and (L,,,,,0,1)(L,\wedge,\vee,\circledast,\to,0,1) a GL-quantale, for LL-subsets M,QP(U)M,Q\in P(\mathbb{U}), the ordered fuzzy inner product is: I(M,Q)=xX[M(x)(U(x)Q(x))]L,\mathbb{I}(M,Q) = \bigvee_{x\in X} \left[M(x)\circledast\left(\mathbb{U}(x)\to Q(x)\right)\right] \in L, where U:XL\mathbb{U}: X\to L is the universe's local capacity and P(U)={W:XLW(x)U(x) x}P(\mathbb{U})=\{W:X\to L \mid W(x) \leq \mathbb{U}(x) \ \forall x\} (Li et al., 2024).

2. Ordered Fuzzy Inner Product on Vector Spaces

For a complex vector space XX, a fuzzy number K:R[0,1]\mathcal{K}:\mathbb{R}\to[0,1], and classical inner products ,,,\langle\cdot,\cdot\rangle', \langle\cdot,\cdot\rangle'' on XX, define: ,α:(0,1]×X×XC,\langle\cdot,\cdot\rangle_\alpha : (0,1] \times X \times X \to \mathbb{C}, to be an ordered fuzzy inner product if for all x,yXx, y \in X and α(0,1]\alpha \in (0,1],

K(x,yα)αx,yα[Aαx,y,Bαx,y]o\mathcal{K}(|\langle x, y\rangle_\alpha|) \ge \alpha \Longleftrightarrow |\langle x, y\rangle_\alpha| \in [A_\alpha |\langle x, y\rangle'|,\, B_\alpha |\langle x, y\rangle''|]_o

with 0<AαBα<0 < A_\alpha \leq B_\alpha < \infty constants. A single inner product variant is frequently used: Aαx,yx,yαBαx,y,A_\alpha |\langle x, y\rangle'| \leq |\langle x, y\rangle_\alpha| \leq B_\alpha |\langle x, y\rangle'|, maintaining the interval bounds (Daraby et al., 24 Dec 2025).

3. Fundamental Properties and Geometric Inequalities

The ordered fuzzy inner product satisfies a set of axiomatic “quasi-inner-product” properties:

  • Positive Definiteness:

x,xα0;x,xα=0    x=0.\langle x, x\rangle_\alpha \succeq 0;\quad \langle x, x\rangle_\alpha = 0 \iff x=0.

  • Conjugate Symmetry:

y,xα=x,yα\langle y, x\rangle_\alpha = \overline{\langle x, y\rangle_\alpha}

  • Quasi-homogeneity:

kAαBαx,yαkx,yαkBαAαx,yα\frac{|k|A_\alpha}{B_\alpha} |\langle x,y\rangle_\alpha| \leq |\langle kx,y\rangle_\alpha| \leq \frac{|k|B_\alpha}{A_\alpha} |\langle x,y\rangle_\alpha|

  • Quasi-additivity:

x+z,yαBαAα(x,yα+z,yα).|\langle x+z, y\rangle_\alpha| \leq \frac{B_\alpha}{A_\alpha}(|\langle x, y\rangle_\alpha| + |\langle z, y\rangle_\alpha|).

When Aα=Bα=1A_\alpha = B_\alpha = 1, these reduce to the classical axioms. Several important inequalities follow:

Inequality Formula Context
Fuzzy Cauchy–Schwarz x,yα2(BαAα)2xαyα2\left|\langle x,y\rangle_\alpha\right|^2 \leq \left(\frac{B_\alpha}{A_\alpha}\right)^2 \left|\|x\|_\alpha \|y\|_\alpha\right|^2 General XX
Fuzzy Parallelogram Law 2AαBα(xα2+yα2)x+yα2+xyα22BαAα(xα2+yα2)2A_\alpha B_\alpha(|\|x\|_\alpha|^2+|\|y\|_\alpha|^2) \leq |\|x+y\|_\alpha|^2+|\|x-y\|_\alpha|^2 \leq 2B_\alpha A_\alpha(|\|x\|_\alpha|^2+|\|y\|_\alpha|^2) General XX
Fuzzy Bessel’s Inequality i=1x,eiα2(BαAα)2xα2\sum_{i=1}^\infty |\langle x, e_i\rangle_\alpha|^2 \leq \left(\frac{B_\alpha}{A_\alpha}\right)^2|\|x\|_\alpha|^2 Orthonormal set

These interval-valued bounds preserve geometric properties essential to inner product spaces (Daraby et al., 24 Dec 2025).

4. Comparative Analysis with Classical and Fuzzy Models

When Aα=Bα=1A_\alpha = B_\alpha = 1 and K\mathcal{K} is crisp-cut, the ordered fuzzy inner product collapses to the classic form. In contrast, classical fuzzy inner products, often defined by a t-norm, either lose fundamental inequalities like Cauchy–Schwarz or degenerate to a real-valued inner product. The ordered interval approach, complemented by two-sided bounds, retains both the “genuine fuzziness” and the full geometric strength, making it suitable for rigorous analysis and generalization (Daraby et al., 24 Dec 2025).

In L-universe settings, when U(x)1\mathbb{U}(x) \equiv 1, the construct recovers the traditional fuzzy intersection operator: I(M,Q)=x[M(x)Q(x)].\mathbb{I}(M,Q) = \bigvee_x [M(x)\circledast Q(x)]. Ordered versions further generalize by incorporating universe capacity normalization (Li et al., 2024).

5. Applications in Fuzzy Rough Set Theory and Operator Characterization

The ordered fuzzy inner product serves as the foundation for new axiomatic approaches in L-valued rough sets. It is instrumental in defining the upper inverse of rough approximation operators: H1(Q)(x)=I(U(x)H(U{x}),Q),\mathbb{H}^{-1}(Q)(x) = \mathbb{I}\bigl(\mathbb{U}(x)\wedge\mathbb{H}(\mathbb{U}_{\{x\}}), Q\bigr), and features in the single-axiom characterizations: M,QP(U):I(Q,H(M))=I(M,H1(Q)).\forall\,M,Q\in P(\mathbb{U}):\quad \mathbb{I}(Q, \mathbb{H}(M)) = \mathbb{I}(M, \mathbb{H}^{-1}(Q)). Structural properties such as reflexivity, transitivity, symmetry, Euclidean, and median relations are incorporated by strengthening this axiom, allowing for comprehensive and unified characterization of LL-valued rough approximations. These results tie the algebraic structure of ordered fuzzy inner products directly to the theory of fuzzy rough sets (Li et al., 2024).

6. Induced Fuzzy Norms and Example Computations

For each α\alpha, the induced fuzzy norm is

xα=x,xα,\|x\|_\alpha = \sqrt{\langle x, x\rangle_\alpha},

and it satisfies interval-valued norm conditions:  ⁣xα[Cαx,Dαx]o,\|\!x\|_\alpha \in [C_\alpha\,\|x\|', D_\alpha\,\|x\|'']_o, where Cα=AαC_\alpha = \sqrt{A_\alpha} and Dα=BαD_\alpha = \sqrt{B_\alpha}. For explicit computation, consider X=R2X = \mathbb{R}^2, α=0.5\alpha = 0.5, A0.5=1A_{0.5} = 1, B0.5=2B_{0.5} = 2, and

x,y0.5=1.5x,y,x,yR2.\langle x, y\rangle_{0.5} = 1.5 \langle x, y\rangle',\quad x, y \in \mathbb{R}^2.

For x=(1,2)x = (1,2), y=(2,1)y = (2,1): x,y=4;x,y0.5=6;6[4,8]o.\langle x, y\rangle' = 4;\quad \langle x, y\rangle_{0.5} = 6;\quad 6 \in [4, 8]_o. Analogously, in L-universe contexts, computations leverage GL-quantale t-norms and residua for LL-subset overlaps:

  • Gödel t-norm: I(M,Q)=max{0.2,0.5,0.3,0.5}=0.5\mathbb{I}(M,Q) = \max\{0.2, 0.5, 0.3, 0.5\} = 0.5.
  • Łukasiewicz t-norm: I(M,Q)=max{0.2,0,0,0.1}=0.2\mathbb{I}(M,Q) = \max\{0.2, 0, 0, 0.1\} = 0.2 (Daraby et al., 24 Dec 2025, Li et al., 2024).

7. Mathematical and Methodological Significance

The ordered fuzzy inner product generalizes classical constructs, preserves critical geometric inequalities, and enables precise characterizations across fuzzy and rough set theoretical frameworks. Its introduction is pivotal for a “third axiomatic approach” to L-valued rough sets, supporting robust, interval-valued reasoning in complex fuzzy contexts and subsuming earlier approaches as special cases. This suggests broader applications in functional analysis, fuzzy information processing, and uncertainty quantification, with implications for future research in generalized operator algebras and fuzzy model theory (Daraby et al., 24 Dec 2025, Li et al., 2024).

Whiteboard

Topic to Video (Beta)

Follow Topic

Get notified by email when new papers are published related to Ordered Fuzzy Inner Product.