Papers
Topics
Authors
Recent
2000 character limit reached

Higgs–N_R Operators in Neutrino EFT

Updated 19 November 2025
  • Higgs–N_R Operators are effective field theory interactions between the Standard Model Higgs doublet and SM-singlet right-handed neutrinos, essential for neutrino mass models.
  • They encompass both lepton-number–violating dimension-5 and lepton-number–conserving dimension-6 terms, each offering distinct phenomenological signatures at colliders.
  • Simulation tools like FeynRules and UFO model files enable precise predictions of collider signals such as rare Higgs decays and heavy neutrino production.

The Higgs–NRN_R operator sector encompasses all effective interactions involving the Standard Model Higgs doublet HH and SM-singlet right-handed neutrinos NRN_R. These operators provide a comprehensive EFT framework for analyzing neutrino mass generation mechanisms, collider signatures of heavy fermion states, and radiative phenomena beyond the renormalizable SM+singlet extension. The leading operators by mass dimension include a unique dimension-five Majorana term and a catalog of dimension-six gauge-invariant (lepton-number–conserving) structures, each with specific phenomenological import. Recent developments provide systematic FeynRules and UFO model files for collider simulations (Titov, 13 Nov 2025).

1. Operator Basis and Classification

The operator basis in the ν\nuSMEFT is naturally organized by lepton-number violation and mass dimension. For nsn_s generations of NjRN_{jR} and Higgs HH, the complete Higgs–NRN_R set up to dimension six is (Titov, 13 Nov 2025):

Dimension-5 (LNV):

ONNHjk=(NjRc  NkR)(HH),j,k=1,...,ns.{\cal O}_{NNH}^{jk} = (\overline{N_{jR}^c}\; N_{kR}) (H^\dagger H), \qquad j,k=1,...,n_s.

Dimension-6 (LNC):

OHNjk=(NjRγμNkR)(HiDμH), OHNeji=(NjRγμeiR)(H~iDμH), OLNHij=(LiH~NjR)(HH), ONBij=LiσμνNjRH~Bμν, ONWij=LiσμνσINjRH~WμνI.\begin{aligned} {\cal O}_{HN}^{jk} & = (\overline{N_{jR}}\gamma^\mu N_{kR}) (H^\dagger\,i\overleftrightarrow{D}_\mu H), \ {\cal O}_{HNe}^{ji}& = (\overline{N_{jR}}\gamma^\mu e_{iR}) (\tilde{H}^\dagger\,i D_\mu H), \ {\cal O}_{LNH}^{ij}& = (\overline{L_{i}}\tilde{H} N_{jR})(H^\dagger H), \ {\cal O}_{NB}^{ij} & = \overline{L_i}\sigma^{\mu\nu}N_{jR}\,\tilde{H}\,B_{\mu\nu}, \ {\cal O}_{NW}^{ij} & = \overline{L_i}\sigma^{\mu\nu}\sigma^I N_{jR}\,\tilde{H}\,W^I_{\mu\nu}. \end{aligned}

Rotation to the photon/Z basis via the weak angle is standard for dipole operators.

The operators are parameterized in the effective Lagrangian,

${\cal L} = {\cal L}_{\rm SM} + \overline{N_{jR}}i\slashed{\partial}N_{jR} - [y_\nu^{ij}\overline{L_i}\tilde{H}N_{jR}+ \tfrac{1}{2}m_{N_j}\overline{N_{jR}^c}N_{jR} +{\rm h.c.}] + \frac{1}{\Lambda}{\cal L}_5 + \frac{1}{\Lambda^2}{\cal L}_6,$

with cXc_X denoting dimensionless Wilson coefficients (Titov, 13 Nov 2025).

2. Phenomenological Structure after Electroweak Symmetry Breaking

Upon EWSB, H(0,(v+h)/2)TH \to (0, (v+h)/\sqrt{2})^T, operators generate both new mass contributions and Higgs/weak-boson mediated interaction vertices:

  • ONNH{\cal O}_{NNH}: Direct Majorana mass shift, mNmN+(cNNHv2/Λ)m_N \to m_N + (c_{NNH} v^2/\Lambda), and hNRNRhN_RN_R (ΔL=2\Delta L=2) coupling.
  • OLNH{\cal O}_{LNH}: Generates hνLNRh \nu_L N_R vertex, shifts Dirac Yukawa yνijyνij+cLNHijv2/(2Λ2)y_\nu^{ij} \to y_\nu^{ij} + c_{LNH}^{ij}v^2/(2\Lambda^2), alters light neutrino–Higgs coupling.
  • OHN{\cal O}_{HN}: Induces ZμNRNRZ_\mu N_R N_R vertex, hZμNRNRh Z_\mu N_R N_R, relevant for ZZ–pole and high-energy searches.
  • Dipoles ONB,ONW{\cal O}_{NB}, {\cal O}_{NW}: After rotation, yield Nνγ/ZN \to \nu \gamma/Z transitions, enable NN production and decay via photons/Z bosons.
  • OHNe{\cal O}_{HNe}: Provides WμNReRW_\mu N_R e_R vertex and hWμNReRh W_\mu N_R e_R term.

Feynman rules implement these structures for collider simulations and theoretical calculations, including proper Lorentz and flavor chaining as in the FeynRules and UFO conventions (Titov, 13 Nov 2025).

3. Collider Signatures and Calculational Formulas

Rare Higgs Decays and Production

The singlet–seesaw model mediates the process hNRNRh \rightarrow N_R N_R via Higgs–singlet mixing: gh1NRNR=ySsinθ,BR(h1NRNR)=Γ(h1NRNR)ΓSM+Γ(h1NRNR)g_{h_1N_RN_R} = y_S \sin\theta, \qquad BR(h_1\to N_RN_R) = \frac{\Gamma(h_1\to N_RN_R)}{\Gamma_{\rm SM} + \Gamma(h_1\to N_RN_R)} with

Γ(h1NRNR)=gh1NRNR216πmh1(14mN2mh12)3/2\Gamma(h_1\to N_RN_R) = \frac{|g_{h_1N_RN_R}|^2}{16\pi m_{h_1}} \left(1-\frac{4m_N^2}{m_{h_1}^2}\right)^{3/2}

(Gao et al., 2019).

At hadron colliders, the cross section is

σ(pph1NRNR)=σ(ggh1)×BR(h1NRNR),\sigma(pp\to h_1\to N_RN_R) = \sigma(gg\to h_1)\times BR(h_1\to N_RN_R),

with numerical estimates, e.g., σ14TeV5.5\sigma_{14\,\rm TeV}\simeq 5.5 fb for BR=104BR=10^{-4} (Gao et al., 2019).

Operator-Induced Production Modes

Dimension-six operators enable processes such as e+eZhZNνe^+e^-\to Zh\to ZN\nu, e+eNνe^+e^-\to N\nu (via γ,Z\gamma^*, Z^*), e+eNNe^+e^-\to NN through ZZ–mediated contact terms, and e+eNee^+e^-\to N e via WW^* exchange (Barducci et al., 2022):

Operator Main Vertex Production Channel Leading Decays
OLNH{\cal O}_{LNH} hνLNRh \nu_L N_R e+eZhZNνe^+e^- \to Zh \to Z N\nu NνffˉN \to \nu f\bar{f}
OLNB/OLNW{\cal O}_{LNB}/O_{LNW} AμνNRA_\mu \nu N_R (dipole) e+eγ/ZNνe^+e^- \to \gamma^*/Z^* \to N\nu Nνγ, νZ, WN \to \nu\gamma,\ \nu Z^*,\ \ell W^*
OHN{\cal O}_{HN} ZμNRNRZ_\mu N_R N_R ZNNZ \to N N N3f, νZN \to 3f,\ \nu Z^*
OHNe{\cal O}_{HNe} WμNReW_\mu N_R e e+eWNee^+e^- \to W^* \to Ne NW3fN \to \ell W^* \to 3f

Cutoff scales probed are \sim10–60 TeV depending on collider energy and channel (Barducci et al., 2022).

4. Renormalization Group Evolution and Naturalness Constraints

One-loop RGE induces operator mixing in the dimension-six sector: dαidlnμ=116π2jγijαj\frac{d\alpha_i}{d\ln\mu} = \frac{1}{16\pi^2}\sum_j \gamma_{ij} \alpha_j with substantial mixing of dipole structures (ONB,ONW{\cal O}_{NB}, {\cal O}_{NW}) into Yukawa (OLNH{\cal O}_{LNH}), leading to radiative neutrino masses,

δmναLNHv3/Λ2\delta m_\nu \sim \alpha_{LNH} v^3/\Lambda^2

and invisible Higgs/Z decays (Br(hinv)10141012\mathrm{Br}(h\to\text{inv}) \sim 10^{-14}–10^{-12}) far below experimental sensitivities for Λ1100\Lambda\sim 1–100 TeV (Chala et al., 2020). Dipole moment requirements for XENON1T-scale anomalies produce radiative mass corrections O(102103)O(10^2-10^3) eV unless tuned.

5. Implementation in FeynRules/UFO and Simulation

Public model files systematically implement all Higgs–NRN_R operators for collider-level event generation (Titov, 13 Nov 2025). Key features:

  • All vertex structures faithful to EFT expansion and flavor index structure.
  • Parameter blocks for operator coefficients cXc_X, physical cutoff Λ\Lambda.
  • Vertices exported for MadGraph5 usage, allowing signal calculations for any specific parameter choices.
  • Proper matching to low-energy seesaw relations; renormalization terms assure physical spectra without double counting.

Links for code and usage: https://github.com/arsenii-titov/vSMEFT.git

6. Connection to Neutrino Mass Models and UV Completions

The Higgs–NRN_R sector is pivotal for both the minimal seesaw and extended EFT frameworks:

  • ONNH{\cal O}_{NNH} and singlet scalar/hybrid models generate the NN Majorana mass directly or through mixing with SS (Gao et al., 2019).
  • OLNH{\cal O}_{LNH}, OHN{\cal O}_{HN}, and dipole structures serve as probes of UV completions involving heavy scalars, vector-like leptons, or new gauge interactions at scale Λ\Lambda (Titov, 13 Nov 2025).
  • Precision constraints and collider limits tightly bound the allowed parameters: e.g., ySsinθ104y_S\sin\theta \lesssim 10^{-4} at HL-LHC, sinθ106sin\theta \lesssim 10^{-6} at future 100 TeV hadron colliders for TeV-scale vSv_S (Gao et al., 2019).

Discovery of rare Higgs decays such as hNRNRh\to N_R N_R or signals of displaced NN decays at future colliders would provide direct evidence for the scalar dynamics responsible for the seesaw-origin of neutrino mass, independent of active–sterile mixing angles. Current and future collider reach covers new physics scales $5–60$ TeV for various operator-induced channels (Barducci et al., 2022).

7. Summary Table: Operator Landscape and Exclusion Reach

Operator Production/Decay Collider Probes Λ\Lambda Reach (TeV)
ONNH{\cal O}_{NNH} hNRNRh \to N_R N_R LHC, future pppp \simfew \to tens
OLNH{\cal O}_{LNH} hνLNRh \nu_L N_R FCC-ee, ILC, CLIC $10–30$
OLNB/LNW{\cal O}_{LNB/LNW} NνγN \to \nu \gamma FCC-ee (Z-pole), high-energy $20–60$
OHN{\cal O}_{HN} ZNRNRZ \to N_R N_R FCC-ee @ ZZ, ILC \sim5–6
OHNe{\cal O}_{HNe} WNReW N_R e CLIC, high-energy e+e/μμe^+e^-/\mu\mu $10–30$

All operator-induced phenomena are consistently simulated and tested in the published UFO/FeynRules models (Titov, 13 Nov 2025). The Higgs–NRN_R operator sector thus provides a structurally complete and phenomenologically rich avenue for probing both neutrino mass generation and new physics at colliders.

Forward Email Streamline Icon: https://streamlinehq.com

Follow Topic

Get notified by email when new papers are published related to Higgs-$N_R$ Operators.