Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GNMSSM: General Next-to-Minimal Supersymmetric Model

Updated 12 November 2025
  • GNMSSM is a supersymmetric extension of the NMSSM that introduces a gauge-singlet superfield and explicit bilinear and tadpole terms to resolve domain wall and tadpole issues.
  • It exhibits rich Higgs and neutralino phenomenology, enabling controlled singlet-doublet mixing to reconcile the 125 GeV SM-like Higgs with a 95 GeV singlet excess and muon g-2 anomalies.
  • The model offers viable dark matter scenarios through a singlino-dominated LSP while ensuring a natural, stable vacuum and compliance with cosmological and collider constraints.

The General Next-to-Minimal Supersymmetric Standard Model (GNMSSM) is a supersymmetric extension of the Minimal Supersymmetric Standard Model (MSSM) in which the discrete Z3\mathbb{Z}_3 symmetry of the standard Next-to-Minimal Supersymmetric Standard Model (NMSSM) is lifted. The GNMSSM augments the theory with a gauge-singlet chiral superfield S^\hat S and allows all renormalizable, gauge-invariant, and RR- and CPCP-conserving superpotential terms. This flexible theoretical structure is constructed to remedy cosmological and ultraviolet problems endemic to the Z3\mathbb{Z}_3-NMSSM, enables a rich Higgs and neutralino phenomenology, and naturally admits scenarios reconciling experimental anomalies—such as the muon g2g-2 discrepancy and low-mass scalar excesses—with dark matter, Higgs, and collider constraints (Cao et al., 24 Feb 2024, Li et al., 9 Nov 2025, 0910.1785, Cao et al., 2022, Cao et al., 2023, Meng et al., 11 May 2024, Cao et al., 2022).

1. Model Structure and Lagrangian

The GNMSSM Lagrangian is defined by extending the MSSM to include a gauge-singlet superfield S^\hat S. The general renormalizable superpotential in the Higgs-singlet sector is

WGNMSSM=WYukawa+λS^H^uH^d+κ3S^3+μH^uH^d+μS2S^2+ξFS^,W_{\rm GNMSSM} = W_{\rm Yukawa} + \lambda\,\hat S\,\hat H_u\cdot\hat H_d + \frac{\kappa}{3}\,\hat S^3 + \mu\,\hat H_u\cdot\hat H_d + \frac{\mu_S}{2}\hat S^2 + \xi_F\,\hat S\,,

where:

  • WYukawaW_{\rm Yukawa}: MSSM quark and lepton Yukawa couplings,
  • λ,κ\lambda,\kappa: dimensionless singlet-doublet and singlet self-couplings,
  • μ\mu: supersymmetric Higgsino mass,
  • μS\mu_S: supersymmetric singlet mass,
  • ξF\xi_F: linear singlet (tadpole) term.

The corresponding soft supersymmetry-breaking Lagrangian for the Higgs/singlet sector reads

Lsoft=mHu2Hu2+mHd2Hd2+mS2S2 +[λAλHuHdS+κ3AκS3+BμHuHd+BS2S2+ξSS+h.c.].\begin{aligned} -\mathcal{L}_{\rm soft} &= m_{H_u}^2\,|H_u|^2 + m_{H_d}^2\,|H_d|^2 + m_S^2\,|S|^2 \ &+ [ \lambda\,A_\lambda\,H_u\cdot H_d\,S + \frac{\kappa}{3}A_\kappa\,S^3 + B_\mu\,H_u\cdot H_d + \frac{B_S}{2}S^2 + \xi_S\,S + \mathrm{h.c.} ]. \end{aligned}

Distinctive to the GNMSSM versus Z3\mathbb{Z}_3-NMSSM are the explicit bilinear (μHuHd\mu\,H_u H_d, μSS2/2\mu_S\,S^2/2) and linear tadpole (ξFS\xi_F\,S) terms. These parameters control the Higgsino and singlino mass independently and explicitly break the Z3\mathbb{Z}_3 symmetry, resolving both tadpole and cosmological domain wall problems for the singlet.

2. Higgs and Neutralino Sectors

Higgs Sector

After electroweak symmetry breaking, the vacuum expectation values are vu=Hu0,vd=Hd0,vs=Sv_u = \langle H_u^0\rangle,\, v_d = \langle H_d^0\rangle,\, v_s = \langle S\rangle. The tree-level scalar potential combines FF-, DD-, and soft terms, ensuring vacuum stability for generic GNMSSM parameter choices (0910.1785, Cao et al., 2022, Cao et al., 2022). The CP-even mass matrix, in the (HNSM,HSM,S)(H_{\rm NSM},H_{\rm SM},S) basis, is augmented relative to the MSSM via parameters λ,κ,μS,μ,ξF,vs\lambda,\kappa,\mu_S,\mu,\xi_F,v_s.

Crucially, the presence of μ\mu and μS\mu_S enables decoupling of the Higgsino and singlino masses from the singlet scalar vev vsv_s:

  • The Higgsino mass: μtot=μ+λvs/2\mu_{\rm tot} = \mu+\lambda v_s/\sqrt2.
  • The singlino mass: mN=2κvs+μSm_N = \sqrt2 \kappa v_s + \mu_S.

The flexibility in these parameters allows for larger singlet-doublet mixing in the CP-even sector without requiring large λ\lambda, increases control over the light singlet-like CP-even Higgs mass mhsm_{h_s}, and facilitates the simultaneous realization of a SM-like hh at 125 GeV and a predominantly singlet hsh_s at 95\sim 95 GeV (Cao et al., 24 Feb 2024, Cao et al., 2023).

Neutralino Sector

The neutralino mass matrix in the (iB~,iW~0,H~d0,H~u0,S~)(-i\tilde B,\,-i\tilde W^0,\,\tilde H_d^0,\,\tilde H_u^0,\,\tilde S) basis becomes

Mχ~0=(M10mZsWcosβ+mZsWsinβ0 0M2+mZcWcosβmZcWsinβ0 0μtotλv2sin ⁣β 0λv2cos ⁣β mN).M_{\tilde\chi^0} = \begin{pmatrix} M_1 & 0 & -m_Z s_W \cos\beta & +m_Z s_W\sin\beta & 0 \ 0 & M_2 & +m_Z c_W\cos\beta & -m_Z c_W\sin\beta & 0 \ * & * & 0 & -\mu_{\rm tot} & -{\lambda v \over \sqrt2}\sin\!\beta \ * & * & * & 0 & -{\lambda v\over \sqrt2}\cos\!\beta \ * & * & * & * & m_N \end{pmatrix}.

A singlino-dominated lightest neutralino (χ~10\tilde\chi_1^0) is achieved for mNμtot,M1,M2m_N \ll \mu_{\rm tot}, M_1, M_2, with mixing controlled mainly by the λv/μtot\lambda v/\mu_{\rm tot} ratio (Meng et al., 11 May 2024, Li et al., 9 Nov 2025, Cao et al., 2022). This singlet-dominance is the origin of the "secluded" dark sector phenomenology in the GNMSSM.

3. Solution to Cosmological and UV Problems

The explicit Z3\mathbb{Z}_3-breaking terms in the superpotential and soft Lagrangian address two long-standing issues of the scale-invariant NMSSM:

  • Domain wall problem: The accidental discrete symmetry leads to degenerate vacua and late-time domain walls, which are cosmologically problematic. The explicit breaking terms lift vacuum degeneracy, collapsing walls before nucleosynthesis (0910.1785, Cao et al., 2022).
  • Tadpole problem: Planck-suppressed operators in supergravity can generate large singlet tadpoles, destabilizing the weak scale. The GNMSSM allows for appropriate tuning of tadpole and bilinear terms to avoid destabilization and maintain naturalness over a broad parameter region.

Unlike the Z3\mathbb{Z}_3-NMSSM, where the effective μ\mu-term is μeff=λvs/2\mu_{\rm eff}=\lambda v_s/\sqrt 2, the GNMSSM's μ\mu and μS\mu_S ensure that neither fine-tuning nor cosmologically dangerous consequences are forced by discrete symmetries (0910.1785).

4. Collider and Low-Energy Phenomenology

Anomalies and Excesses

The GNMSSM provides unified explanations for:

  • Muon anomalous magnetic moment (g2g-2): Light electroweakinos and smuons, with tanβ\tan\beta enhanced, yield Δaμ2.5×109\Delta a_\mu\sim 2.5\times 10^{-9} predominantly via wino–Higgsino–smuon (WHL) loops (Cao et al., 24 Feb 2024, Cao et al., 2022). Analytic expressions for all leading diagrams—including Bino–Higgsino–(L,R)-slepton and Bino-LR mixing contributions—are given by

aμWHLα28πmμ2M2μtanβmν~4[2fC(...)mν~4Mμ~L4fN(...)],a_{\mu}^{\rm WHL} \simeq {\alpha_2\over 8\pi} {m_\mu^2\,M_2\,\mu\,\tan\beta \over m_{\tilde\nu}^4} \left[2f_C(...)-{m_{\tilde\nu}^4\over M_{\tilde\mu_L}^4}f_N(...)\right],\,

where fC,fNf_C, f_N are loop functions, and relating parameters of the GNMSSM directly to the measured aμa_\mu.

  • Low-mass Higgs signals: Observed diphoton and bbˉb\bar b excesses near 95 GeV (LHC, LEP) are naturally interpreted as resonant production of the singlet-dominated CP-even Higgs hsh_s. The couplings to SM states are suppressed but non-negligible due to controlled doublet admixture: ChsttˉVhsSM,ChsbbˉVhsSMtanβVhsNSM,ChsVV=VhsSM,C_{h_s t\bar t}\simeq V_{h_s}^{\rm SM},\quad C_{h_s b\bar b}\simeq V_{h_s}^{\rm SM}-\tan\beta\,V_{h_s}^{\rm NSM},\quad C_{h_s VV}=V_{h_s}^{\rm SM}, with VhsiV_{h_s}^{i} as singlet/doublet mixing. Required mixing to match observed strengths: VhsSM0.35V_{h_s}^{\rm SM} \sim 0.35, VhsNSM tanβ0.070.11V_{h_s}^{\rm NSM}\ \tan\beta \sim 0.07{-}0.11 (Cao et al., 24 Feb 2024, Cao et al., 2023).

Parameter Space and Experimental Constraints

Global parameter scans with flat priors over (λ,κ,tanβ,μ,mhs,mN,Aλ,Aκ,M1,2,Mμ~L,μ~R)(\lambda,\,\kappa,\,\tan\beta,\,\mu,\,m_{h_s},\,m_N,\,A_\lambda,\,A_\kappa,\,M_{1,2},\,M_{\tilde\mu_L,\tilde\mu_R}) show compatibility with:

  • 125 GeV SM-like Higgs mass and couplings (HiggsBounds/HiggsSignals)
  • Planck relic density, LZ spin-independent/direct detection bounds,
  • B-physics (BsμμB_s\to \mu\mu, BXsγB\to X_s\gamma),
  • Vacuum stability and perturbative unitarity (Vevacious, SARAH),
  • LHC SUSY and extra Higgs searches (CheckMATE, SModelS), requiring, for viable points:
    • mh125m_h \approx 125 GeV,
    • mhs95m_{h_s}\simeq 95 GeV,
    • μtot210\mu_{\rm tot}\gtrsim 210 GeV,
    • mχ~10140m_{\tilde\chi_1^0}\gtrsim 140 GeV,
    • tanβ18\tan\beta \gtrsim 18.

5. Dark Matter Phenomenology

The GNMSSM realizes a "secluded" WIMP dark matter scenario via a singlino-dominated χ~10\tilde\chi_1^0 annihilating into singlet-sector scalars: χ~10χ~10hsAs(s-wave),hshs,  AsAs(p-wave),\tilde\chi_1^0\tilde\chi_1^0 \to\, h_sA_s\,\text{(s-wave)},\quad h_sh_s,\;A_sA_s\,\text{(p-wave)}, with hsh_s, AsA_s singlet-dominated CP-even/odd Higgses. The annihilation cross sections are approximately

σvhshs3vF2κ416πmχ~2,σvAsAsvF2κ448πmχ~2,σvhsAsκ44πmχ~2.\langle\sigma v\rangle_{h_s h_s} \simeq {3 v_F^2\,\kappa^4\over 16\pi m_{\tilde \chi}^2},\qquad \langle\sigma v\rangle_{A_sA_s} \simeq {v_F^2\,\kappa^4\over 48\pi m_{\tilde \chi}^2},\qquad \langle\sigma v\rangle_{h_sA_s} \simeq {\kappa^4\over 4\pi m_{\tilde\chi}^2}.

The relic density is achieved for κ0.1\kappa\sim 0.1–$0.7$ at mχ~1040m_{\tilde\chi_1^0}\sim 40–$400$ GeV (Meng et al., 11 May 2024, Li et al., 9 Nov 2025, Cao et al., 2022).

Direct detection cross sections scale as σSIλ2κ2\sigma_{\rm SI}\propto \lambda^2\kappa^2 (with moderate singlet-doublet Higgs mixing) and σSIλ4\sigma_{\rm SI}\propto\lambda^4 if hsh_s is heavy, ensuring compliance with the LZ bound for λ0.05\lambda \lesssim 0.05–$0.1$.

Nested-sampling and Bayesian analyses favor a singlino-dominated LSP in 65%\gtrsim 65\%99%99\% of the parameter space, with annihilation typically dominated by χ~10χ~10hsAs\tilde\chi_1^0\tilde\chi_1^0\to h_sA_s (58%58\%), AsAsA_sA_s (35%35\%), and hshsh_sh_s (2%\sim 2\%) (Meng et al., 11 May 2024, Li et al., 9 Nov 2025, Cao et al., 2022).

Characteristic mass hierarchies:

  • S~<B~<H~\tilde S < \tilde B < \tilde H: light Bino, μtot200\mu_{\rm tot}\sim200 GeV, annihilation via AsAsA_sA_s or hsAsh_sA_s, mild tuning.
  • S~<H~<B~\tilde S < \tilde H < \tilde B: heavy Bino, μtot900\mu_{\rm tot}\gtrsim900 GeV, requires small λ\lambda for direct detection, large tuning.

Benchmarks in the literature exemplify points yielding correct aμa_\mu, mhm_h, mhsm_{h_s}, Ωh2\Omega h^2, and direct detection rates, for both Bino- and singlino-dominated scenarios (Cao et al., 24 Feb 2024, Cao et al., 2023).

6. Experimental and Future Tests

A comprehensive suite of collider, dark matter, and low-energy measurements constrain the GNMSSM, but large portions of parameter space remain viable:

  • High-Luminosity LHC (3ab13\,\text{ab}^{-1}): Can probe compressed electroweakino spectra (ppχ~χ~+ETmisspp\to\tilde\chi\tilde\chi\to\ell\ell+E_T^{\rm miss} down to ΔmO(10)\Delta m\sim O(10) GeV) and direct slepton production (m~1m_{\tilde\ell}\lesssim 1 TeV) (Cao et al., 24 Feb 2024).
  • Future e+ee^+e^- colliders (ILC, CLIC, FCC-ee): Expected sensitivity to ghsVVg_{h_sVV} couplings at a few percent and improved $95$ GeV Higgs mass resolution, facilitating precision studies of singlet-like Higgs states.
  • Direct detection: LZ 2024 and future multi-ton experiments will test σSI\sigma_{\rm SI} down to 104910^{-49} cm2^2; future improvements by a factor of 5 would strongly impact the allowed parameter space (Meng et al., 11 May 2024, Li et al., 9 Nov 2025).
  • Muon g2g-2 (FNAL/J-PARC): Ongoing improvements will further challenge or confirm the surviving corners of GNMSSM parameter space.
  • Higgs property measurements: Precision determinations of the 125 GeV Higgs couplings to the percent level will critically test the singlet-doublet mixing structure required for low-mass excesses (Cao et al., 2023).
  • Dedicated LHC searches: Targeted analyses for extended decay chains with soft leptons and multi-step cascades will be essential for probing the fully-realized GNMSSM scenario (Li et al., 9 Nov 2025, Cao et al., 2022).

The broad decoupling and flexible parameter structure of the GNMSSM ensure its continued empirical testability and its capacity to synthesize diverse anomalies within a natural, UV-complete, and cosmologically-viable supersymmetric framework.

Forward Email Streamline Icon: https://streamlinehq.com

Follow Topic

Get notified by email when new papers are published related to General Next-to-Minimal Supersymmetric Standard Model (GNMSSM).