CuPc-Enhanced NV Relaxometry: Method & Analysis
- The paper outlines a method using shallow NV centers for T1 relaxometry to extract CuPc spin dynamics and spectral properties.
- CuPc-enhanced NV relaxometry leverages Lorentzian spectral models to quantify spin fluctuations and dipolar interactions in molecular films.
- The technique precisely determines NV–CuPc standoff distances (~1 nm) and reveals detailed hyperfine interactions within the CuPc spin bath.
CuPc-enhanced NV relaxometry refers to the use of relaxometry of shallow diamond nitrogen-vacancy (NV) centers to probe the electron spin ensemble of a polycrystalline copper phthalocyanine (CuPc) thin film. This approach enables the extraction of the CuPc spin ensemble's spectral, dynamical, and orientational properties at room temperature, which are inaccessible to bulk electron resonance techniques. The methodology leverages the sensitivity of NV centers to the fluctuating magnetic fields produced by CuPc electronic spins, providing quantitative access to correlation timescales, hyperfine structure, and local environments, and even yields the NV center’s depth with sub-nanometer accuracy.
1. Microscopic Origin of NV Relaxation in a Fluctuating CuPc Spin Bath
A shallow NV center (electronic spin ) positioned at depth below a CuPc film is subject to dipolar interactions with the unpaired electron () of each CuPc molecule. The relevant NV spin levels and are split by a zero-field term and a Zeeman shift .
The temporal fluctuations from the CuPc spin bath create a transverse magnetic field at the NV site: where is the angle between the NV quantization axis and the vector connecting NV and bath spin , and is the transverse CuPc electron spin component.
The Hamiltonian in the rotating frame is
Applying Fermi’s Golden Rule, the NV depolarization rate (relaxation rate ) is
where is the Fourier transform at . Modeling the spin bath as a continuous density and integrating over all CuPc spins in a semi-infinite film yields
A common explicit form is
Here, , , and all symbols have their standard values as in the data.
The scaling of provides strong distance dependence, enabling nanoscale spatial resolution.
2. Lorentzian Spectral Density of CuPc Spin Fluctuations
Each CuPc electron spin is modeled as a two-level fluctuator with Markovian dynamics and correlation time , yielding a transverse autocorrelation
The corresponding spectral density is Lorentzian: The full spin spectral density is . The key assumptions are: single-exponential decay, and a homogeneous spin bath with correlation time independent of . This spectral profile determines the frequency dependence of the NV relaxation rate.
3. NV Relaxometry Protocol
The NV relaxometry experiment uses a three-block pulse sequence:
- Laser Pump (5 μs at 532 nm): Polarizes the NV into .
- Dark interval (): Spin evolves freely for time (typically 0 to several ms), allowing relaxation under the influence of the CuPc bath.
- Laser Readout: Measures NV photoluminescence, partitioned into a “signal” and a delayed “reference” window for normalization.
By recording the normalized fluorescence as a function of dark time , and fitting with an exponential or stretched-exponential, one extracts the $1/e$ time constant .
Increasing relaxation (shorter ) in the presence of CuPc reflects enhanced magnetic noise at compared to a bare NV under otherwise identical conditions.
4. Resolving the CuPc Electron Hyperfine Spectrum
CuPc molecules exhibit both axial -tensor anisotropy and hyperfine coupling between electron and Cu nucleus. In an external magnetic field , the electron resonance frequencies are
with and .
As is swept, the NV transition frequency comes into resonance with these CuPc transitions, leading to cross-relaxation and a series of Lorentzian dips in at matching conditions. By fitting versus , hyperfine parameters and the local molecular axis orientation are retrieved.
Experimentally, the field-dependent relaxation has the form: where is the cross-relaxation amplitude and is the baseline NV relaxation rate absent resonant CuPc transitions.
5. Room-Temperature Correlation Time and Dominance of Electron-Electron Interactions
The CuPc spin correlation time is governed by both spin-lattice and intra-bath electron-electron interactions. The relaxation processes are:
- (a) Spin-lattice (phononic) relaxation: , typically and -dependent.
- (b) Spin-spin (dipolar flip-flop) processes between CuPc electrons.
The effective correlation time is obtained from
where
This leads to
For typical experimental conditions ( K, ns, ), , yielding ns. Experimental observation shows is essentially independent of between 200–800 G, signifying dominance of the field-independent dipolar (spin–spin) term.
6. Extracting NV–CuPc Standoff with Nanometer Precision
With , , and fixed from spectroscopy, the NV’s is measured with () and without () the CuPc film. The additional relaxation rate
is attributed solely to CuPc spin noise. Inverting Eq. (1), the NV–CuPc standoff is
This procedure yields depth with approximately 1 nm precision, enabled by the sharp dependence of the relaxation rate on distance.
CuPc-enhanced NV relaxometry provides a versatile experimental platform for probing molecular spin systems, enabling the extraction of dynamical properties, hyperfine structure, and nanoscale spatial information inaccessible to traditional bulk techniques. This methodology yields insights into spin bath engineering and hybrid quantum material characterization, supporting developments in molecular-scale quantum processors and spin-based quantum networks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days free