Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Control Barrier Certificates Overview

Updated 23 July 2025
  • Control Barrier Certificates (CBCs) are defined as safety constraints on control inputs that ensure occlusion avoidance by maintaining a safe distance from obstacles.
  • Probabilistic CBCs (PrCBCs) transform chance constraints into deterministic quadratic conditions, robustly handling measurement noise and uncertainty.
  • Integrating CBCs with Model Predictive Control (MPC) enables real-time control adjustments by filtering unconstrained inputs through a quadratic program ensuring safety margins.

(PrCBCs) under chance constraints. These certificates encode safety conditions as constraints on the control input.

  1. Formulating the Occlusion Avoidance Condition
    • Given a feature point state si\boldsymbol{s}_i and the obstacle’s center so\boldsymbol{s}_o (both in the normalized image plane), the occlusion-free condition is defined by the function

hi,o(c)(s,so)=siso2Rn2h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) = \|\boldsymbol{s}_i - \boldsymbol{s}_o\|² - R_n²

where RnR_n is the obstacle’s radius in the normalized image plane. The safe (or admissible) set is then

H(c)={(si,so)R2:hi,o(c)(s,so)0,i}\mathcal{H}⁽ᶜ⁾ = \{ (\boldsymbol{s}_i, \boldsymbol{s}_o) \in \mathbb{R}² : h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) \geq 0, \forall i \}

  1. Classical Control Barrier Certificates (CBCs)
    • Without measurement uncertainty, one enforces occlusion avoidance by ensuring that the time derivative of h(c)h⁽ᶜ⁾ is nonnegative when entering the “safety margin.” The admissible control space is defined as:

B(s,so)={VcUh˙i,o(c)(s,so,Vc)+γhi,o(c)(s,so)0,i}\mathcal{B}(\boldsymbol{s},\boldsymbol{s}_o) = \{ \boldsymbol{V}_c \in \mathcal{U} \mid \dot{h}⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o, \boldsymbol{V}_c) + \gamma h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) \geq 0, \forall i \}

  • The derivative of the barrier function is given by

h˙i,o(c)(s,so,Vc)=2(siso)(LsiLo)Vc2RnLorVc\dot{h}⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o, \boldsymbol{V}_c) = 2(\boldsymbol{s}_i - \boldsymbol{s}_o)^\top (L_{s_i} - L_o) \boldsymbol{V}_c - 2R_n L_{or} \boldsymbol{V}_c

where Lsi,Lo,L_{s_i}, L_o, and LorL_{or} are interaction matrices derived from the camera model.

  1. Accounting for Measurement Uncertainty: Chance Constraints
    • Typically, pixel coordinates are noisy, given measurements

s^i=si+wiands^o=so+wo\hat{\boldsymbol{s}}_i = \boldsymbol{s}_i + \boldsymbol{w}_i \quad \text{and} \quad \hat{\boldsymbol{s}}_o = \boldsymbol{s}_o + \boldsymbol{w}_o

with wi,woN(0,Σ)\boldsymbol{w}_i, \boldsymbol{w}_o \sim N(0,\Sigma). * To ensure that occlusion avoidance holds with high probability (confidence level σ(0,1)\sigma \in (0,1)), it is required that

P((s,so)H(c))σP((\boldsymbol{s}, \boldsymbol{s}_o) \in \mathcal{H}⁽ᶜ⁾) \geq \sigma

  1. Formulation of Probabilistic Control Barrier Certificates (PrCBCs)
    • The PrCBC transforms the chance constraint into a deterministic quadratic control constraint. From the chance constraint

P(VcB(s,so))σP(\boldsymbol{V}_c \in \mathcal{B}(\boldsymbol{s},\boldsymbol{s}_o)) \geq \sigma

it derives a deterministic condition as

Δs2+2γΔs(ΔL4RnLr)Vc2Rn2+1γ2Vc(ΔLΔL)Vc+4e2\|\Delta\boldsymbol{s}\|² + \frac{2}{\gamma} \Delta\boldsymbol{s}^\top (\Delta L - 4R_n L_r) \boldsymbol{V}_c \geq 2R_n² + \frac{1}{\gamma²} \boldsymbol{V}_c^\top (\Delta L^\top \Delta L) \boldsymbol{V}_c + 4e²

where Δs=s^is^o\Delta\boldsymbol{s} = \hat{\boldsymbol{s}}_i - \hat{\boldsymbol{s}}_o, ΔL=LsiLo\Delta L = L_{s_i} - L_o, and e=Φ1(σ)e = \Phi^{-1}(\sigma), the quantile of the standard normal distribution. This leads to the constraint

VcAi,oσVc+bi,oσVc+ci,o0,i\boldsymbol{V}_c^\top A_{i,o}^\sigma \boldsymbol{V}_c + \boldsymbol{b}_{i,o}^\sigma \boldsymbol{V}_c + c_{i,o} \leq 0, \, \forall i

where Ai,oσ,bi,oσ,A_{i,o}^\sigma, \boldsymbol{b}_{i,o}^\sigma, and ci,oc_{i,o} are derived terms from the transformation.

  1. Integration with Model Predictive Control (MPC)
    • The approach integrates MPC to generate an unconstrained control sequence Vc(mpc)\boldsymbol{V}_c^{(\text{mpc})}. The control input is filtered through a Quadratic Program (QP):

Vc=argminVVVc(mpc)2\boldsymbol{V}_c^* = \arg\min_{\boldsymbol{V}} \|\boldsymbol{V} - \boldsymbol{V}_c^{(\text{mpc})}\|²

subject to

VSσ(s^,s^o),VVmax\boldsymbol{V} \in \mathcal{S}^\sigma(\hat{\boldsymbol{s}}, \hat{\boldsymbol{s}}_o), \quad \|\boldsymbol{V}\| \leq V_{\text{max}}

ensuring the final control Vc\boldsymbol{V}_c^* respects the safety constraints while executing the MPC's planned strategy.

  1. Simulation Results and Practical Implications
    • Simulations reveal that CBCs under perfect conditions achieve occlusion avoidance; however, under noise, PrCBCs ensure robust avoidance. The PrCBC successfully retains minimum distances, maintaining predefined safety thresholds across trials.

The PrCBC formulation here transforms a chance-constrained safety requirement into a deterministic quadratic control condition, offering robust IBVS under uncertainty. This integration allows MPC strategies to be adapted in real-time, effectively handling dynamic environments and measurement imperfection.

Forward Email Streamline Icon: https://streamlinehq.com

Follow Topic

Get notified by email when new papers are published related to Control Barrier Certificates (CBCs).