Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Control Barrier Certificates Overview

Updated 23 July 2025
  • Control Barrier Certificates (CBCs) are defined as safety constraints on control inputs that ensure occlusion avoidance by maintaining a safe distance from obstacles.
  • Probabilistic CBCs (PrCBCs) transform chance constraints into deterministic quadratic conditions, robustly handling measurement noise and uncertainty.
  • Integrating CBCs with Model Predictive Control (MPC) enables real-time control adjustments by filtering unconstrained inputs through a quadratic program ensuring safety margins.

(PrCBCs) under chance constraints. These certificates encode safety conditions as constraints on the control input.

  1. Formulating the Occlusion Avoidance Condition
    • Given a feature point state si\boldsymbol{s}_i and the obstacle’s center so\boldsymbol{s}_o (both in the normalized image plane), the occlusion-free condition is defined by the function

hi,o(c)(s,so)=siso2Rn2h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) = \|\boldsymbol{s}_i - \boldsymbol{s}_o\|² - R_n²

where RnR_n is the obstacle’s radius in the normalized image plane. The safe (or admissible) set is then

H(c)={(si,so)R2:hi,o(c)(s,so)0,i}\mathcal{H}⁽ᶜ⁾ = \{ (\boldsymbol{s}_i, \boldsymbol{s}_o) \in \mathbb{R}² : h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) \geq 0, \forall i \}

  1. Classical Control Barrier Certificates (CBCs)
    • Without measurement uncertainty, one enforces occlusion avoidance by ensuring that the time derivative of h(c)h⁽ᶜ⁾ is nonnegative when entering the “safety margin.” The admissible control space is defined as:

B(s,so)={VcUh˙i,o(c)(s,so,Vc)+γhi,o(c)(s,so)0,i}\mathcal{B}(\boldsymbol{s},\boldsymbol{s}_o) = \{ \boldsymbol{V}_c \in \mathcal{U} \mid \dot{h}⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o, \boldsymbol{V}_c) + \gamma h⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o) \geq 0, \forall i \}

  • The derivative of the barrier function is given by

h˙i,o(c)(s,so,Vc)=2(siso)(LsiLo)Vc2RnLorVc\dot{h}⁽ᶜ⁾_{i,o}(\boldsymbol{s},\boldsymbol{s}_o, \boldsymbol{V}_c) = 2(\boldsymbol{s}_i - \boldsymbol{s}_o)^\top (L_{s_i} - L_o) \boldsymbol{V}_c - 2R_n L_{or} \boldsymbol{V}_c

where Lsi,Lo,L_{s_i}, L_o, and LorL_{or} are interaction matrices derived from the camera model.

  1. Accounting for Measurement Uncertainty: Chance Constraints
    • Typically, pixel coordinates are noisy, given measurements

s^i=si+wiands^o=so+wo\hat{\boldsymbol{s}}_i = \boldsymbol{s}_i + \boldsymbol{w}_i \quad \text{and} \quad \hat{\boldsymbol{s}}_o = \boldsymbol{s}_o + \boldsymbol{w}_o

with wi,woN(0,Σ)\boldsymbol{w}_i, \boldsymbol{w}_o \sim N(0,\Sigma). * To ensure that occlusion avoidance holds with high probability (confidence level σ(0,1)\sigma \in (0,1)), it is required that

P((s,so)H(c))σP((\boldsymbol{s}, \boldsymbol{s}_o) \in \mathcal{H}⁽ᶜ⁾) \geq \sigma

  1. Formulation of Probabilistic Control Barrier Certificates (PrCBCs)
    • The PrCBC transforms the chance constraint into a deterministic quadratic control constraint. From the chance constraint

P(VcB(s,so))σP(\boldsymbol{V}_c \in \mathcal{B}(\boldsymbol{s},\boldsymbol{s}_o)) \geq \sigma

it derives a deterministic condition as

Δs2+2γΔs(ΔL4RnLr)Vc2Rn2+1γ2Vc(ΔLΔL)Vc+4e2\|\Delta\boldsymbol{s}\|² + \frac{2}{\gamma} \Delta\boldsymbol{s}^\top (\Delta L - 4R_n L_r) \boldsymbol{V}_c \geq 2R_n² + \frac{1}{\gamma²} \boldsymbol{V}_c^\top (\Delta L^\top \Delta L) \boldsymbol{V}_c + 4e²

where Δs=s^is^o\Delta\boldsymbol{s} = \hat{\boldsymbol{s}}_i - \hat{\boldsymbol{s}}_o, ΔL=LsiLo\Delta L = L_{s_i} - L_o, and e=Φ1(σ)e = \Phi^{-1}(\sigma), the quantile of the standard normal distribution. This leads to the constraint

VcAi,oσVc+bi,oσVc+ci,o0,i\boldsymbol{V}_c^\top A_{i,o}^\sigma \boldsymbol{V}_c + \boldsymbol{b}_{i,o}^\sigma \boldsymbol{V}_c + c_{i,o} \leq 0, \, \forall i

where Ai,oσ,bi,oσ,A_{i,o}^\sigma, \boldsymbol{b}_{i,o}^\sigma, and ci,oc_{i,o} are derived terms from the transformation.

  1. Integration with Model Predictive Control (MPC)
    • The approach integrates MPC to generate an unconstrained control sequence Vc(mpc)\boldsymbol{V}_c^{(\text{mpc})}. The control input is filtered through a Quadratic Program (QP):

Vc=argminVVVc(mpc)2\boldsymbol{V}_c^* = \arg\min_{\boldsymbol{V}} \|\boldsymbol{V} - \boldsymbol{V}_c^{(\text{mpc})}\|²

subject to

VSσ(s^,s^o),VVmax\boldsymbol{V} \in \mathcal{S}^\sigma(\hat{\boldsymbol{s}}, \hat{\boldsymbol{s}}_o), \quad \|\boldsymbol{V}\| \leq V_{\text{max}}

ensuring the final control Vc\boldsymbol{V}_c^* respects the safety constraints while executing the MPC's planned strategy.

  1. Simulation Results and Practical Implications
    • Simulations reveal that CBCs under perfect conditions achieve occlusion avoidance; however, under noise, PrCBCs ensure robust avoidance. The PrCBC successfully retains minimum distances, maintaining predefined safety thresholds across trials.

The PrCBC formulation here transforms a chance-constrained safety requirement into a deterministic quadratic control condition, offering robust IBVS under uncertainty. This integration allows MPC strategies to be adapted in real-time, effectively handling dynamic environments and measurement imperfection.