Papers
Topics
Authors
Recent
2000 character limit reached

BST Supermembrane Action in M-Theory

Updated 6 December 2025
  • BST supermembrane action is a Green–Schwarz-type formulation that combines the kinetic Nambu–Goto term with a Wess–Zumino coupling to capture M2-brane dynamics.
  • It originates from the infrared limit of Yang–Mills theory, where gauge fields decouple to yield superembedding coordinates consistent with 11d Minkowski superspace.
  • The formulation underscores the unique role of kappa symmetry and full worldvolume supersymmetry in 11d, in contrast to reduced supersymmetry models in lower dimensions.

The BST supermembrane action is the Green–Schwarz-type worldvolume action for the eleven-dimensional supermembrane (M2-brane), introduced by Bergshoeff, Sezgin, and Townsend. It provides a fully kappa-symmetric formulation of membrane dynamics in 11d Minkowski superspace, encapsulating both the kinetic Nambu–Goto term and a Wess–Zumino (WZ) coupling to the background 3-form superfield. This action captures the low-energy effective theory of M2-branes and plays a central role in M-theory.

1. Construction from Infrared Limit of Yang–Mills Theory

The supermembrane (BST) action emerges as the infrared (ε→0) limit of a Yang–Mills theory with structure group given by the N=1N=1 eleven-dimensional supertranslation group G=SUSY(N=1)/SO(10,1)G = \mathrm{SUSY}(N=1)/SO(10,1). The theory is formulated on the product manifold M4=Σ3×S1M_4 = \Sigma_3 \times S^1, with Σ3\Sigma_3 a Lorentzian three-manifold (worldvolume coordinates xa,a=0,1,2x^a,\,a=0,1,2) and S1S^1 a circle of coordinate x3x^3 and vanishingly small radius.

The product metric is deformed as:

ds2(ϵ)=gab(x)dxadxb+ϵ2(dx3)2,ϵ0.ds^2(\epsilon) = g_{ab}(x) dx^a dx^b + \epsilon^2(dx^3)^2, \qquad \epsilon\rightarrow 0.

The gauge field AA decomposes into AμdxμA_\mu dx^\mu, with field strength FF and action:

SYM[ϵ]=2πΣ3d3xdetgab[ϵ14FabFab+12ϵ1Fa3Fa3+12ϵΛ].S_{YM}[\epsilon] = -2\pi \int_{\Sigma_3} d^3x \sqrt{-\det g_{ab}} \left[ \epsilon \tfrac14 F_{ab}F^{ab} + \tfrac12 \epsilon^{-1} F_{a3}F^{a3} + \tfrac12 \epsilon \Lambda \right].

In the ϵ0\epsilon\to 0 limit, all gauge degrees of freedom decouple except the “Wilson line” A3(X,θ)A_3\to(X,\theta), which can be identified with the superembedding coordinates of the physical membrane into superspace. The F-term is solved as:

Fa3=aA3=ΠaΔξΔ,Πaα=aXαiθˉΓαaθ,ΠaA=aθAF_{a3} = \partial_a A_3 = \Pi_a^\Delta\, \xi_\Delta, \quad \Pi_a^\alpha = \partial_a X^\alpha - i\, \bar\theta \Gamma^\alpha \partial_a \theta, \quad \Pi_a^A = \partial_a \theta^A

where ξΔ\xi_\Delta are 11d supertranslation generators and (Xα,θA)(X^\alpha, \theta^A) are worldvolume bosonic and fermionic fields (Lechtenfeld et al., 2015).

2. Structure of the BST Action

The full BST action is obtained by combining the kinetic (Nambu–Goto) and Wess–Zumino terms:

SM2=SNG+SWZS_{M2} = S_{NG} + S_{WZ}

with

SNG=Td3ξdetgij,gij=ηαβΠiαΠjβ,S_{NG} = T \int d^3 \xi \sqrt{ -\det g_{ij} },\qquad g_{ij} = \eta_{\alpha\beta}\,\Pi_i^\alpha \Pi_j^\beta,

and

SWZ=TΣ4Ω4=Td3ξ16ϵijkCCBA(X,θ)ΠiCΠjBΠkA,S_{WZ} = T \int_{\Sigma_4} \Omega_4 = T \int d^3\xi\,\frac{1}{6}\epsilon^{ijk} C_{CBA}(X,\theta)\, \Pi_i^C\,\Pi_j^B\,\Pi_k^A,

where the 4-form Ω4=fΔΛΣΓΠΔΠΛΠΣΠΓ\Omega_4 = f_{\Delta\Lambda\Sigma\Gamma} \Pi^\Delta \wedge \Pi^\Lambda \wedge \Pi^\Sigma \wedge \Pi^\Gamma is closed, and its potential C3C_3 is the standard supermembrane 3-form. The membrane tension is set by the S1S^1 volume: T=2πT=2\pi (Lechtenfeld et al., 2015).

In Green–Schwarz variables, this reads:

SM2=Td3ξ{det(ΠiαΠjβηαβ)+16ϵijkΠiAΠjBΠkCBCBA(X,θ)}.S_{M2} = T \int d^3 \xi \Big\{-\sqrt{-\det(\Pi_i^\alpha \Pi_j^\beta \eta_{\alpha\beta})} + \frac{1}{6} \epsilon^{ijk} \Pi_i^A \Pi_j^B \Pi_k^C B_{CBA}(X,\theta)\Big\}.

3. Static Gauge and Worldvolume Supersymmetry

Upon choosing static gauge (Xμ(σ)=σμX^\mu(\sigma)=\sigma^\mu, μ=0,1,2\mu=0,1,2) and suitable κ\kappa-symmetry gauge-fixing (θ+=0\theta_+=0, with Γ012θ±=±θ±\Gamma^{012}\theta_\pm = \pm \theta_\pm), the fermionic coordinate is reduced to a 16-component real SO(8)SO(8) spinor ϑθ\vartheta\equiv\theta_-. The worldvolume fields then consist of eight transverse scalars Xi(σ)X^i(\sigma), i=3,...,10i=3,...,10, and ϑ(σ)\vartheta(\sigma).

The expanded static-gauge Lagrangian, to quartic order in derivatives and fields, is

LM=12aXiaXi+iϑˉΓaaϑ+14aXibXibXjaXj18(aXiaXi)2i2aXibXiϑˉΓabϑi4ϵabcaXibXjϑˉΓijcϑ14(ϑˉΓabϑ)(ϑˉΓbaϑ)+\mathcal{L}_{\rm M} = -\frac12 \partial_a X^i \partial^a X^i + i \bar\vartheta \Gamma^a \partial_a \vartheta +\frac14 \partial_a X^i \partial_b X^i \partial^b X^j \partial^a X^j -\frac18 (\partial_a X^i \partial^a X^i)^2 -\frac{i}{2} \partial_a X^i \partial_b X^i \bar\vartheta \Gamma^a \partial^b \vartheta -\frac{i}{4} \epsilon^{abc} \partial_a X^i \partial_b X^j \bar\vartheta \Gamma_{ij} \partial_c \vartheta -\frac14 (\bar\vartheta \Gamma_a \partial_b \vartheta)(\bar\vartheta \Gamma^b \partial^a \vartheta) +\dots

where a,b,c=0,1,2a,b,c=0,1,2 (Tseytlin et al., 4 Dec 2025).

The preserved on-shell supersymmetry algebra is N=8\mathcal{N}=8 in three dimensions, acting nonlinearly with 16 real supercharges, only realized on-shell due to the presence of κ\kappa-symmetry and the dynamical embedding geometry. The supersymmetry transformations are:

δXi=iξˉΓiϑ+,δϑ=12aXiΓaΓiξ+,\delta X^i = i\,\bar\xi\,\Gamma^i\,\vartheta + \dots,\qquad \delta \vartheta = \frac12 \partial_a X^i \Gamma^a \Gamma^i \xi + \dots,

where ξ\xi is an SO(8)SO(8) spinor with Γ012ξ=+ξ\Gamma^{012} \xi = +\xi.

4. Comparison with Worldvolume N=1\mathcal{N}=1 “Spinning-Membrane” Analogs and Dimensional Dependence

A manifestly N=1\mathcal{N}=1 3d worldvolume supersymmetric version can be constructed using eight 3d scalar multiplets (Xi,ψi)(X^i, \psi^i), with ψi\psi^i an SO(8)SO(8) vector of 3d Majorana spinors:

LN=1=12aXiaXi+iψˉiγaaψi+14aXibXibXjaXj18(X)4i2aXibXiψˉjγabψji2ϵabcaXibXjψˉicψj14(ψˉγψ)2+\mathcal{L}_{\mathcal{N}=1} = -\frac12 \partial_a X^i \partial^a X^i + i \bar\psi^i \gamma^a \partial_a \psi^i + \frac14 \partial_a X^i \partial_b X^i \partial^b X^j \partial^a X^j -\frac18 (\partial X)^4 -\frac{i}{2} \partial_a X^i \partial_b X^i \bar\psi^j \gamma^a \partial^b \psi^j -\frac{i}{2} \epsilon^{abc} \partial_a X^i \partial_b X^j \bar\psi^i \partial_c \psi^j -\frac14 (\bar\psi \gamma \partial \psi)^2 + \dots

The BST action and this N=1\mathcal{N}=1 theory only coincide for transverse dimension D^=D32\hat D = D-3 \leq 2 (i.e., D=4,5D=4,5), where antisymmetric UijklU^{ijkl} tensor structures vanish. For D=11D=11 (D^=8\hat D=8), the full N=8\mathcal{N}=8 worldvolume supersymmetry can only be realized if the fermions are SO(8)SO(8) spinors, not vectors. The ϵabc\epsilon^{abc}-type term in the BST action cannot be translated into the spinning-membrane language except in D=4,5D=4,5 (Tseytlin et al., 4 Dec 2025).

Action Worldvolume Supersymmetry Fermion Type D=4,5D=4,5 Equivalence D=11D=11 Equivalence
BST (static gauge) N=8\mathcal{N}=8 SO(8)SO(8) spinor Yes No
Spinning-membrane N=1\mathcal{N}=1 SO(8)SO(8) vector Yes No

5. Quantum (One-Loop) Scattering and S-matrix

Comparison of worldvolume S-matrices at one-loop order between the static-gauge BST action and the N=1\mathcal{N}=1 “spinning-membrane” model reveals:

  • For D=4D=4 and D=5D=5, the one-loop 2→2 scalar scattering amplitudes for both actions agree:

AD=4,5(1)=AM2(1)A^{(1)}_{D=4,5} = A^{(1)}_{\rm M2}

  • In D=11D=11, the amplitudes diverge due to the presence of the extra ϵabc\epsilon^{abc}-type term in the BST expansion, which cannot be realized in the N=1\mathcal{N}=1 model:

A(1)D=11AM2(1)D=11A^{(1)}\big|_{D=11} \neq A^{(1)}_{\rm M2}\big|_{D=11}

The mismatch in D=11D=11 directly reflects the inequivalence of the worldvolume fermionic structures allowed by the two actions (Tseytlin et al., 4 Dec 2025).

6. Wess–Zumino Term and Cohomological Origin

In the original Yang–Mills context, the BST WZ term arises as the dimensional reduction of a 5-form built from the gauge curvature and the 4-cocycle structure constants of the supertranslation group:

SWZ,YM=κΣ4×S1fΔΛΣΓ  FΔFΛFΣFΓdx3S_{WZ,YM} = \kappa \int_{\Sigma_4\times S^1} f_{\Delta\Lambda\Sigma\Gamma} \; F^\Delta \wedge F^\Lambda \wedge F^\Sigma \wedge F^\Gamma \wedge dx^3

leading in the ϵ0\epsilon \to 0 limit to

SWZ=TΣ4Ω4=TΣ3C3,S_{WZ} = T \int_{\Sigma_4} \Omega_4 = T \int_{\Sigma_3} C_3,

realizing the correct BST superspace WZ coupling. The closure dΩ4=0d\Omega_4=0 and relation Ω4Σ3=dC3\Omega_4|_{\Sigma_3}=dC_3 encode the essential invariance properties under supersymmetry and κ\kappa-symmetry (Lechtenfeld et al., 2015).

7. Significance, Limitations, and Dimensional Special Cases

The BST action provides the unique kappa-symmetric and maximally supersymmetric worldvolume theory for the elementary M2-brane in D=11D=11. Its structure enforces that, except for D=4,5D=4,5, full worldvolume supersymmetry and closure require SO(8)SO(8) spinor fermions—the N=8\mathcal{N}=8 structure is irreducible to a model of eight scalar multiplets with vector fermions.

A plausible implication is that attempts to construct a target-space–covariant “spinning-membrane” analog with manifest linear N=8\mathcal{N}=8 worldvolume supersymmetry in D=11D=11 are obstructed, confirming the special status of the BST action as the unique representation of M2-brane dynamics (Tseytlin et al., 4 Dec 2025). This suggests that the BST formulation is essential for a consistent quantum theory of fundamental membranes in M-theory.


References:

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)

Whiteboard

Follow Topic

Get notified by email when new papers are published related to BST Supermembrane Action.