Papers
Topics
Authors
Recent
2000 character limit reached

Bicolored Motzkin Paths in Combinatorics

Updated 30 November 2025
  • Bicolored Motzkin paths are lattice paths from (0,0) to (n,0) that use up, down, and horizontal steps with two distinct colors and nested parenthetical constraints.
  • They are analyzed via recurrence relations and generating functions, providing explicit formulas and bijections to combinatorial objects like Young tableaux and interval-closed sets.
  • Their rich combinatorial structure supports applications in lattice path enumeration, poset theory, and algebraic combinatorics.

A bicolored Motzkin path (also “2-Motzkin path” or “two-colored Motzkin path”) is a lattice path from (0,0)(0,0) to (n,0)(n,0) that remains weakly above the xx-axis and whose steps carry one of two colors or are uncolored, subject to combinatorial and sometimes parenthesis-type nesting constraints. These objects generalize classical Motzkin paths by introducing color assignments to step types and are a central tool for establishing bijections in algebraic combinatorics and enumerative geometry, notably with interval-closed sets, Young tableaux of bounded height, and constrained lattice walks. Their paper encompasses precise recursions, generating functions, closed formulae, and complex bijections to combinatorial structures.

1. Combinatorial Definitions

A bicolored Motzkin path of length nn is a sequence of steps s1s2sns_1s_2\cdots s_n, each from (x,y)(x,y) to (x+1,y)(x+1,y'), with y{y1,y,y+1}y'\in\{y-1,\,y,\,y+1\}, such that successive steps never result in negative yy. The coloring schemes and step constraints vary by context:

  • General colored (“2-Motzkin”) case (Eu et al., 2013):
    • Steps:
    • U(1)=(1,1)U^{(1)}=(1,1) (up, color 1)
    • U(2)=(1,1)U^{(2)}=(1,1) (up, color 2)
    • D(1)=(1,1)D^{(1)}=(1,-1) (down, color 1)
    • D(2)=(1,1)D^{(2)}=(1,-1) (down, color 2)
    • L=(1,0)L=(1,0) (level, uncolored)
    • All subwords for each k=1,2k=1,2 consisting of U(k),D(k)U^{(k)},D^{(k)} form correctly matched parenthesis words.
    • Every (U(2),D(2))(U^{(2)},D^{(2)}) pair is nested inside some (U(1),D(1))(U^{(1)},D^{(1)}) pair.
    • For every prefix μ\mu,

    #U(1)(μ)#D(1)(μ)#U(2)(μ)#D(2)(μ)0\#U^{(1)}(\mu)-\#D^{(1)}(\mu)\ge\#U^{(2)}(\mu)-\#D^{(2)}(\mu)\ge 0

  • Basic bicolored case (Krattenthaler, 15 Jan 2025):

    • Steps:
    • U=(1,1)U=(1,1) (up)
    • D=(1,1)D=(1,-1) (down)
    • HU=(1,0)H_U=(1,0) (“umber” horizontal)
    • HD=(1,0)H_D=(1,0) (“denim” horizontal)
    • No step ever below y=0y=0.
    • u(P)=d(P)u(P)=d(P) for paths returning to y=0y=0.
  • Interval-closed set version (Elizalde et al., 20 Dec 2024):
    • Steps: U (1,1)U\ (1,1), D (1,1)D\ (1,-1), H1 (1,0)H_1\ (1,0) color 1, H2 (1,0)H_2\ (1,0) color 2.
    • Bijection constraints (see Section 2).

This diversity reflects the role of coloring—either as a local decoration or tied to more stringent parenthetical constraints.

2. Recurrence Relations and Generating Functions

Bicolored Motzkin paths admit rich recursive structure and generating functions.

Mn(2)=Mn1(2)+2i=0n2Mi(2)Mn2i(2),M0(2)=1M_n^{(2)} = M_{n-1}^{(2)} + 2\sum_{i=0}^{n-2} M_i^{(2)} M_{n-2-i}^{(2)}, \qquad M_0^{(2)} = 1

Functional equation:

M(2)(x)=1+xM(2)(x)+2x2(M(2)(x))2M^{(2)}(x) = 1 + x M^{(2)}(x) + 2x^2\left(M^{(2)}(x)\right)^2

Closed form (unique solution vanishing at x=0x=0):

M(2)(x)=1x(1x)28x24x2M^{(2)}(x) = \frac{1-x-\sqrt{(1-x)^2-8x^2}}{4x^2}

Explicit coefficients:

Mn(2)=j=0n/22jj+1(2jj)(n2j)M_n^{(2)} = \sum_{j=0}^{\lfloor n/2\rfloor} \frac{2^j}{j+1} \binom{2j}{j} \binom{n}{2j}

M(x)=1+2xM(x)+x2M2(x)M(x) = 1 + 2x M(x) + x^2 M^2(x)

M(x)=12x14x2x2M(x) = \frac{1-2x-\sqrt{1-4x}}{2x^2}

For statistics of up/down and horizontal steps,

M(x,y,z)=1+2xzM(x,y,z)+x2y2M2(x,y,z)M(x, y, z) = 1 + 2xz M(x, y, z) + x^2 y^2 M^2(x, y, z)

Leading to coefficient extraction via Lagrange inversion:

[xny2qzj]M(x,y,z)=n!j!q!(q+1)!2j,  with n=j+2q[x^n y^{2q} z^j] M(x,y,z) = \frac{n!}{j!\,q!\,(q+1)!} 2^j, ~~ \text{with}~ n = j + 2q

C(x,y)=1+(x+y)C(x,y)+xyC2(x,y)C(x,y) = 1 + (x+y)C(x,y) + x y C^2(x,y)

C(x,y)=1xy(1xy)24xy2xyC(x,y) = \frac{1-x-y-\sqrt{(1-x-y)^2 - 4xy}}{2xy}A(x,y) = \frac{2}{1-x-y + 2xy + \sqrt{(1-x-y)^2 - 4xy}}</p><p><em>AlltheserecurrencesarevariantsoftheMotzkinSchro¨derbackbone,tailoredwithcoloringandcombinatorialconstraintstoencodericherobjectclasses.</em></p><h2class=paperheadingid=bijectionstoalgebraicandgeometricobjects>3.BijectionstoAlgebraicandGeometricObjects</h2><p>BicoloredMotzkinpathsemergenaturallyascanonicalrepresentativesinbijectionstoavarietyofcombinatorialobjects.</p><ul><li><strong>StandardYoungtableaux(SYT)ofboundedheight(<ahref="/papers/1302.3012"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Euetal.,2013</a>):</strong><ul><li>Thereisabijectionbetween2Motzkinpathsoflength</p> <p><em>All these recurrences are variants of the Motzkin–Schröder backbone, tailored with coloring and combinatorial constraints to encode richer object classes.</em></p> <h2 class='paper-heading' id='bijections-to-algebraic-and-geometric-objects'>3. Bijections to Algebraic and Geometric Objects</h2> <p>Bicolored Motzkin paths emerge naturally as canonical representatives in bijections to a variety of combinatorial objects.</p> <ul> <li><strong>Standard Young tableaux (SYT) of bounded height (<a href="/papers/1302.3012" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Eu et al., 2013</a>):</strong> <ul> <li>There is a bijection between 2-Motzkin paths of length nandSYTofsize and SYT of size nandatmost and at most 5rows.</li><li>Thebijectionproceedsbyrecursivelypeelingofffirstrowtableauentriesandmatchingwithlevelorupdownpairs,trackingcolortoenforcenestedstructure.</li><li>ThenumberofuncoloredlevelstepsinthebicoloredMotzkinpathequalsthenumberofoddlengthcolumnsinthetableau.</li></ul></li><li><strong>Intervalclosedsetsintheposet rows.</li> <li>The bijection proceeds by recursively “peeling off” first-row tableau entries and matching with level or up–down pairs, tracking color to enforce nested structure.</li> <li>The number of uncolored level steps in the bicolored Motzkin path equals the number of odd-length columns in the tableau.</li> </ul></li> <li><strong>Interval-closed sets in the poset [m] \times [n](<ahref="/papers/2412.16368"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Elizaldeetal.,20Dec2024</a>):</strong><ul><li>EveryintervalclosedsetisinbijectionwithabicoloredMotzkinpathsatisfying:</li><li> (<a href="/papers/2412.16368" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Elizalde et al., 20 Dec 2024</a>):</strong> <ul> <li>Every interval-closed set is in bijection with a bicolored Motzkin path satisfying:</li> <li>u(M)+h_1(M) = m</li><li></li> <li>d(M)+h_2(M) = n</li><li>No</li> <li>No H_2steponthe step on the xaxisisimmediatelyfollowedby-axis is immediately followed by H_1.</li><li>Generatingfunction.</li> <li>Generating function A(x,y)enumeratesallsuchsetsviathesepaths.</li></ul></li><li><strong>Setvaluedstandardtableaux(<ahref="/papers/2501.09208"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Krattenthaler,15Jan2025</a>):</strong><ul><li>TworowedsetvaluedstandardtableauxareinbijectionwithbicoloredMotzkinpaths.</li><li>Eachentryinthefirstrowcorrespondstoanupstep,inthesecondrowtoadownstep,andadditionalentriestocoloredhorizontals.</li></ul></li><li><strong>Quarterplaneandtriangularwalks(<ahref="/papers/1412.1504"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Yeats,2014</a>,<ahref="/papers/2007.08868"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Courtieletal.,2020</a>):</strong><ul><li>QuarterplanewalkswithspecifiedstepsmapbijectivelytobicoloredMotzkinpaths.</li><li>Triangularwalksinsixdirections(restricteddomain)matchtwocoloredMotzkinpathsofboundedheight,withhorizontalstepsforbiddenatmaximalheight.</li><li>Thescaffoldingbijection(<ahref="/papers/2007.08868"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Courtieletal.,2020</a>)providesalineartimemappingassociatingthecellwiseprofileofdomainpointstoMotzkinpathsteps.</li></ul></li></ul><h2class=paperheadingid=enumerativeconsequencesandexplicitformulas>4.EnumerativeConsequencesandExplicitFormulas</h2><p>Enumerationformulasarebothexplicitandrefinedintermsofstepstatistics.</p><ul><li><strong>Examplevaluesfor enumerates all such sets via these paths.</li> </ul></li> <li><strong>Set-valued standard tableaux (<a href="/papers/2501.09208" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Krattenthaler, 15 Jan 2025</a>):</strong> <ul> <li>Two-rowed set-valued standard tableaux are in bijection with bicolored Motzkin paths.</li> <li>Each entry in the first row corresponds to an up-step, in the second row to a down-step, and additional entries to colored horizontals.</li> </ul></li> <li><strong>Quarter-plane and triangular walks (<a href="/papers/1412.1504" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Yeats, 2014</a>, <a href="/papers/2007.08868" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Courtiel et al., 2020</a>):</strong> <ul> <li>Quarter-plane walks with specified steps map bijectively to bicolored Motzkin paths.</li> <li>Triangular walks in six directions (restricted domain) match two-colored Motzkin paths of bounded height, with horizontal steps forbidden at maximal height.</li> <li>The “scaffolding” bijection (<a href="/papers/2007.08868" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Courtiel et al., 2020</a>) provides a linear-time mapping associating the cellwise profile of domain points to Motzkin path steps.</li> </ul></li> </ul> <h2 class='paper-heading' id='enumerative-consequences-and-explicit-formulas'>4. Enumerative Consequences and Explicit Formulas</h2> <p>Enumeration formulas are both explicit and refined in terms of step statistics.</p> <ul> <li><strong>Example values for M_n^{(2)}(<ahref="/papers/1302.3012"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Euetal.,2013</a>):</strong></li></ul><divclass=overflowxautomaxwfullmy4><tableclass=tablebordercollapsewfullstyle=tablelayout:fixed><thead><tr><th> (<a href="/papers/1302.3012" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Eu et al., 2013</a>):</strong></li> </ul> <div class='overflow-x-auto max-w-full my-4'><table class='table border-collapse w-full' style='table-layout: fixed'><thead><tr> <th>n</th><th></th> <th>M_n^{(2)}</th></tr></thead><tbody><tr><td>0</td><td>1</td></tr><tr><td>1</td><td>1</td></tr><tr><td>2</td><td>3</td></tr><tr><td>3</td><td>7</td></tr><tr><td>4</td><td>21</td></tr><tr><td>5</td><td>61</td></tr></tbody></table></div><ul><li><strong>Refinedmultinomialenumeration(<ahref="/papers/2501.09208"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Krattenthaler,15Jan2025</a>):</strong></li></ul><p>ForbicoloredMotzkinpathsoflength</th> </tr> </thead><tbody><tr> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> </tr> <tr> <td>2</td> <td>3</td> </tr> <tr> <td>3</td> <td>7</td> </tr> <tr> <td>4</td> <td>21</td> </tr> <tr> <td>5</td> <td>61</td> </tr> </tbody></table></div> <ul> <li><strong>Refined multinomial enumeration (<a href="/papers/2501.09208" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Krattenthaler, 15 Jan 2025</a>):</strong></li> </ul> <p>For bicolored Motzkin paths of length nwith with iup/downand up/down and jhorizontalsteps,</p><p> horizontal steps,</p> <p>N_{n,i,j} = 2^j \frac{n!}{j!\,q!\,(q+1)!}</p><p>with</p> <p>with i = 2q,, j = n - 2q,vanishingforodd, vanishing for odd i.</p><ul><li><strong>Intervalclosedsetsinproductofchains(<ahref="/papers/2412.16368"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Elizaldeetal.,20Dec2024</a>):</strong></li></ul><divclass=overflowxautomaxwfullmy4><tableclass=tablebordercollapsewfullstyle=tablelayout:fixed><thead><tr><th>.</p> <ul> <li><strong>Interval-closed sets in product of chains (<a href="/papers/2412.16368" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Elizalde et al., 20 Dec 2024</a>):</strong></li> </ul> <div class='overflow-x-auto max-w-full my-4'><table class='table border-collapse w-full' style='table-layout: fixed'><thead><tr> <th>n \backslash m</th><th>0</th><th>1</th><th>2</th><th>3</th></tr></thead><tbody><tr><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td></tr><tr><td>1</td><td>1</td><td>2</td><td>4</td><td>7</td></tr><tr><td>2</td><td>1</td><td>4</td><td>13</td><td>33</td></tr><tr><td>3</td><td>1</td><td>7</td><td>30</td><td>114</td></tr></tbody></table></div><ul><li><strong>Catalanrepresentation(<ahref="/papers/2012.14947"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">DeJageretal.,2020</a><ahref="/papers/2501.09208"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Krattenthaler,15Jan2025</a>):</strong></li></ul><p></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> </tr> </thead><tbody><tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>2</td> <td>4</td> <td>7</td> </tr> <tr> <td>2</td> <td>1</td> <td>4</td> <td>13</td> <td>33</td> </tr> <tr> <td>3</td> <td>1</td> <td>7</td> <td>30</td> <td>114</td> </tr> </tbody></table></div> <ul> <li><strong>Catalan representation (<a href="/papers/2012.14947" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">DeJager et al., 2020</a><a href="/papers/2501.09208" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Krattenthaler, 15 Jan 2025</a>):</strong></li> </ul> <p>m_n = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} C_k 2^{n-2k},\quad C_k = \frac{1}{k+1}\binom{2k}{k}$

5. Applications in Lattice Path Enumeration and Algebraic Combinatorics

Bicolored Motzkin paths provide a unifying combinatorial framework for enumerative and algebraic structures:

  • Representation-theoretic applications: The bijective correspondence with SYTs of height 5 enables enumerative interpretations in terms of representation dimension counts and branching rules (Eu et al., 2013).
  • Poset theory: Interval-closed sets in products of chains are efficiently counted via bicolored Motzkin path representations, revealing polynomiality in enumeration for fixed rank (Elizalde et al., 20 Dec 2024).
  • Tableaux theory: Two-rowed set-valued standard tableaux, a key object in combinatorial commutative algebra, are enumerated and structurally analyzed using bicolored Motzkin codes (Krattenthaler, 15 Jan 2025).
  • Lattice walks: The direct mapping to quarter-plane and triangular walks supports the analysis of walk-in-domain models with step multiplicities and boundary constraints, with implications for weighted enumerative models (Yeats, 2014, Courtiel et al., 2020).

6. Connections to Generalized and Higher Order Motzkin Paths

Bicolored Motzkin paths form a subset of (α,β)(\vec{\alpha},\vec{\beta})-colored Motzkin paths, corresponding to (a,B)=(2,2)(a,B)=(2,2) in the general framework (DeJager et al., 2020):

  • Steps and coloring generalized to LL-steps at height 0 and height k>0k>0 with arbitrary color assignments.
  • Multivariate generating functions express colored path counts, Riordan arrays, and connections to unary–binary trees and kk-Dyck paths.
  • Explicit closed-form coefficient expressions and recursive structure admit direct polynomial-combinatorial interpretations.

A plausible implication is that techniques for analyzing colored Motzkin paths generalize to richer path models, including those with amplitude constraints, step multiplicities, and nesting properties relevant in higher-dimensional combinatorial and geometric contexts.

Whiteboard

Follow Topic

Get notified by email when new papers are published related to Bicolored Motzkin Paths.