2-UQ Rings and Unit Square Structures
Updated 18 September 2025
- 2-UQ rings are unital rings defined by every unit’s square equaling 1 plus a quasi‑nilpotent element that commutes with it.
- They generalize 2‑UJ and 2‑UU rings while interlinking key invariants such as the Jacobson radical, nilpotency, and tripotency in R/J(R).
- Their structure is preserved under constructions like subrings, corners, and trivial extensions, but fails in nontrivial matrix rings.
A 2‑UQ ring is a unital ring in which the square of every unit can be written as the sum of the identity and a quasi‑nilpotent element that commutes with it. This property generalizes the structure observed in unit groups for several other classes of “clean-like” and unipotent-like rings, and interacts deeply with classical invariants such as the Jacobson radical, nilpotency, and the presence of certain identities (e.g., tripotency). The property is robust under a wide range of ring-theoretic constructions and provides a unifying viewpoint for extensions of nil-clean and unipotent unit rings.
1. Definition and Basic Properties
A ring R (associative with unity) is called a 2‑UQ ring if every unit u∈U(R) satisfies
u2=1+q
for some q∈QN(R), with QN(R) the set of quasi-nilpotent elements of R. Equivalently, for all u∈U(R), (u2−1) is quasi-nilpotent and commutes with u2. Quasi-nilpotent elements are those q∈R such that for every x∈R commuting with q, $1 - qx$ is invertible.
2‑UQ rings properly include:
- 2‑UJ rings (u2=1+j, j∈J(R))
- 2‑UU rings (u2=1+n, n∈Nil(R))
- UQ rings (u=1+q, q∈QN(R))
Key structural facts include:
- In potent rings, the 2‑UQ, 2‑UU, and 2‑UJ properties coincide, all characterized by tripotency of R/J(R).
- The class is strictly larger than 2‑UU or 2‑UJ rings, as there exist rings which are 2‑UQ but not 2‑UU or 2‑UJ (Najafi et al., 14 Sep 2025, Mahmood et al., 8 Aug 2025).
The 2‑UQ property sits naturally in a lattice of "unit square" conditions. The inclusions and distinctions are summarized as follows:
| Ring Class |
Unit Square |
Constraints on u2 |
| 2‑UU |
u2 |
u2=1+n, n∈Nil(R) |
| 2‑UJ |
u2 |
u2=1+j, j∈J(R) |
| 2‑UQ |
u2 |
u2=1+q, q∈QN(R) |
| 2‑UNJ (see (Mahmood et al., 8 Aug 2025)) |
u2 |
u2=1+n+j, n∈Nil(R),j∈J(R) |
| UQ |
u |
u=1+q, q∈QN(R) |
The following implications hold:
In potent or semi‑potent rings, the chain collapses: for R potent, R is 2‑UQ iff R/J(R) is tripotent, and this is also equivalent to R being 2‑UJ or 2‑UU (Najafi et al., 14 Sep 2025).
3. Structural Results and Preservation under Constructions
The 2‑UQ property is preserved under numerous constructions:
- Subrings: If S⊆R is a good subring (i.e., U(R)∩S⊆U(S)) of a 2‑UQ ring, S is also 2‑UQ (Najafi et al., 14 Sep 2025).
- Corners: If R is 2‑UQ and e2=e∈R, then eRe is 2‑UQ (Najafi et al., 14 Sep 2025).
- Direct Products: R=∏iRi is 2‑UQ iff every Ri is 2‑UQ.
- Trivial and Triangular Extensions: Trivial extensions T(R,M) and triangular matrix rings Tn(R) are 2‑UQ iff R is 2‑UQ.
- Morita Contexts: If R is a Morita context with connecting bimodules M,N such that MN and NM are nilpotent and central, R is 2‑UQ iff both end rings are 2‑UQ (Najafi et al., 14 Sep 2025).
- Matrix rings: For n≥2, Mn(S) is never 2‑UQ if S=0 (Najafi et al., 14 Sep 2025); more generally, any ring with a non-trivial matrix corner (of size at least $2$) cannot be 2‑UQ.
This non-preservation for matrix rings is parallel to results on UQ rings (Danchev et al., 23 Feb 2024), where higher-dimensional block structures obstruct quasi-nilpotent square decompositions.
4. Interactions with Regularity, Potence, and Cleanness
The 2‑UQ condition is intricately interconnected with standard ring-theoretic regularity properties:
- Potent and Semi‑Potent Rings: For a potent or semi‑potent ring R,
- R is 2‑UQ ⟺R/J(R) is tripotent (a3=a for all a∈R/J(R));
- In such cases, R is also 2‑UJ and 2‑UU (Najafi et al., 14 Sep 2025).
- Regular Rings: In a regular 2‑UQ ring, equivalences R regular ⟺ R strongly regular ⟺ R unit-regular ⟺ R tripotenthold.</li><li><strong>Clean/ExchangeProperties</strong>:Many2‑UQringsareclean,typicallywhenR/J(R)istripotent;stronglyclean,clean,andquasi−nil−cleandecompositionsbecomeequivalentundertheidentificationQN(R) = J(R),whichholdsforsemipotentrings(<ahref="/papers/2402.15455"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Danchevetal.,23Feb2024</a>,<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>).</li></ul><h2class=′paper−heading′id=′2−uq−group−rings−and−their−restrictions′>5.2‑UQGroupRingsandTheirRestrictions</h2><p>Akeyfocusinrecentresearchisthebehaviorofthe2‑UQpropertyingroupringsRG:</p><ul><li>IfRGis2‑UQand2 \in J(R),thenGmustbea2‑group(<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>).</li><li>If3 \in J(R),thenGmustbea3‑grouporhaveallelementsoforder2(exponent2);thatis,Giseithera3−grouporanelementaryabelian2−group.</li><li>ForR = \mathbb{Z}_m,Ris2‑UQifandonlyifm = 2^k 3^sforsomek,s \ge 0(<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>).</li><li>Theseconstraintsmirrorthoseforstronglynil−cleanandn‑UUgrouprings(<ahref="/papers/2311.15018"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Danchevetal.,2023</a>),furtherdelineatingtheeffectoftheJacobsonradicalprimesonadmissibleunderlyinggroups.</li></ul><p>Thenecessityarisesfromtheforcedstructureonunitsandtherequirementthatu^2 - 1alwayslandsinQN(RG),stronglyimpactingpossiblegroupexponents.</p><h2class=′paper−heading′id=′boundary−examples−extensions−and−generalizations′>6.BoundaryExamples,Extensions,andGeneralizations</h2><p>Multipleexplicitconstructionsdemonstratethestrictenlargementofthe2‑UQclassoveritsrelatives:</p><ul><li>InA = \mathbb{F}_3\langle x, y \mid x^2 = 0 \rangle,everyunitsquaredlandsin1 + QN(A),soAis2‑UQbutnot2‑UJbecauseJ(A) = 0and,forinstance,(1+x)^2 \notin 1 + J(A)(<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>).</li><li>B = \mathbb{F}_2[[x]]is2‑UQ,1 + xisaunit,(1 + x)^2 = 1 + x^2,butBisnot2‑UUsincex^2isnotnilpotent(<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>).</li><li>Matrixrings:M_{n}(S)withn \geq 2alwaysfailtobe2‑UQ(<ahref="/papers/2402.15455"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Danchevetal.,23Feb2024</a>,<ahref="/papers/2509.11319"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Najafietal.,14Sep2025</a>),reflectingtheessentialone−dimensionalityof2‑UQbehavior.</li></ul><p>Theclass2‑UNJ(unitssquareto1 + n + jwithnnilpotent,j \in J(R))and2‑ΔU(unitsquaresin1 + A(R),withA(R)thelargestJacobsonradicalsubringstableundermultiplicationbyunits)generalizeorstraddlethe2‑UQproperty,andcurrentresearchisinvestigatingthepreciserelationshipsandhierarchiesbetweentheseclasses(<ahref="/papers/2508.06689"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Mahmoodetal.,8Aug2025</a>,<ahref="/papers/2501.04720"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Hasanzadehetal.,2Jan2025</a>).</p><h2class=′paper−heading′id=′connections−to−quadratic−algebras−and−involutive−structures′>7.ConnectionstoQuadraticAlgebrasandInvolutiveStructures</h2><p>Beyondunit−squarephenomena,theconceptofauniversalquadraticstructureassociatedtoastandardinvolutiononanalgebraisintimatelyconnectedtothe2‑UQpatterninnoncommutativesettings(<ahref="/papers/1003.3512"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Voight,2010</a>).ForanR−algebraBofdegree2,onealwayshasacanonicalinvolutiveantiautomorphism\overline{\phantom{x}}suchthateveryx \in Bsatisfies</p><p>x^2 - (x + \overline{x})x + x\overline{x} = 0.</p><p>Thisuniversalquadraticequation,governedbyinvolution,characterizes—undermildhypotheses—algebrasofdegree2andiscentraltotheclassificationofquadraticandexceptionalrank‑3algebras.</p><p><em>Thissuggeststhatinthebroadestsense,theunifyingthreadof2‑UQbehavioristheuniversalconstraintofaquadraticidentitylinkingunits(orelements)todistinguishedsubsetssuchasQN(R)ortheimageofacanonicalinvolution.</em></p><hr><p><strong>SummaryTable:PreservationandNon−Preservationofthe2‑UQProperty</strong></p><divclass=′overflow−x−automax−w−fullmy−4′><tableclass=′tableborder−collapsew−full′style=′table−layout:fixed′><thead><tr><th>Construction</th><th>2‑UQPreservation</th></tr></thead><tbody><tr><td>Directproduct\prod_{i} R_i</td><td>YesiffeachR_i$ 2‑UQ
| Trivial extension $T(R, M)</td><td>YesiffR$ 2‑UQ |
| Triangular matrix ring $T_n(R)</td><td>YesiffR$ 2‑UQ |
| Matrix ring $M_n(R),n \geq 2$ |
Never 2‑UQ |
| Morita context with nilpotent trace |
Yes iff both corners 2‑UQ |