Papers
Topics
Authors
Recent
2000 character limit reached

2-Parameter Deformed Cartan Matrices

Updated 19 December 2025
  • 2-Parameter Deformed Cartan Matrices is a framework that embeds indeterminates q and t into symmetrizable Cartan matrices, integrating classical root-theoretic and quantum algebraic data.
  • The deformation employs combinatorial braid-group operators and graded Euler–Poincaré theory to yield categorical interpretations in module categories and quiver varieties.
  • Applications include monoidal categorifications, Langlands duality correspondences, and insights into the representation theory of quantum affine algebras and generalized preprojective algebras.

A two-parameter deformation of Cartan matrices introduces indeterminates (q,t)(q,t) into the structure of symmetrizable generalized Cartan matrices, yielding families of matrices C(q,t)C(q,t) whose entries encode both classical root-theoretic and quantum algebraic data. This deformation emerges naturally in the study of quantum affinizations, monoidal categorifications, and the representation theory of generalized preprojective algebras, particularly in the context of Langlands duality and the theory of quiver W\mathcal{W}-algebras. The deformation admits detailed combinatorial and categorical interpretations, notably through the action of braid-group operators and via the graded Euler–Poincaré theory on module categories attached to quivers. These insights, developed by Fujita and Murakami across finite and general type cases, establish deep connections to quantum affine algebras, the geometry of quiver varieties, and conjectural correspondences in tensor product categorifications (Fujita et al., 2021, Fujita et al., 2023).

1. Construction of the (q,t)(q,t)-Deformed Cartan Matrix

Given a symmetrizable generalized Cartan matrix C=(cij)i,jIC=(c_{ij})_{i,j\in I} with minimal left symmetrizer D=diag(di)iID = \mathrm{diag}(d_i)_{i \in I}, and indeterminates q,tq,t, the (q,t)(q,t)-deformed Cartan matrix C(q,t)C(q,t) is defined by

Cij(q,t)={qdit1+qdit,i=j, [cij]q,ij,C_{ij}(q,t) = \begin{cases} q^{d_i}t^{-1} + q^{-d_i}t, & i = j, \ [c_{ij}]_q, & i \ne j, \end{cases}

where [k]q=(qkqk)/(qq1)Z[q±1][k]_q = (q^k - q^{-k})/(q - q^{-1}) \in \mathbb Z[q^{\pm 1}] (Fujita et al., 2021).

In the general type setting, for iji\sim j adjacent in the Dynkin diagram, introduce gij=gcd(cij,cji)g_{ij} = \gcd(|c_{ij}|, |c_{ji}|) and fij=cij/gijf_{ij} = |c_{ij}|/g_{ij}, then set

Cij(q,t)={qdit1+qdit,i=j, δijgij[fij]qdi,ij,C_{ij}(q,t) = \begin{cases} q^{d_i}t^{-1} + q^{-d_i}t, & i = j, \ -\delta_{i\sim j} g_{ij} [f_{ij}]_{q^{d_i}}, & i \ne j, \end{cases}

with [m]x=(xmxm)/(xx1)[m]_x = (x^m - x^{-m})/(x - x^{-1}) (Fujita et al., 2023).

The deformed Cartan matrix specializes to CC for (q,t)=(1,1)(q,t) = (1,1) and, for all types, yields an invertible matrix over Z[q±1,t±1]\mathbb Z[q^{\pm 1}, t^{\pm 1}].

2. Combinatorial and Braid-Group Formulation

No canonical closed-form for C(q,t)C(q,t) exists across all types; instead, the entries can be expressed combinatorially via braid-group operators:

  • Fix a (possibly infinite) reduced sequence (i1,i2,)(i_1, i_2, \dots) adapted to the Weyl group.
  • Associate to each simple root ii a QQ-linear deformed reflection

Ti(x)=xqditCij(q,t)αiT_i(x) = x - q^{-d_i} t C_{ij}(q,t) \alpha_i

(for xx in the root space), which satisfy the braid relations (Fujita et al., 2021, Fujita et al., 2023).

  • For dual basis elements {ϖi}\{\varpi_i^\vee\}, the (i,j)(i,j) entry is

Cij(q,t)=qdjt1k>0,ik=j(ϖi,Ti11Tik11(αj))q,tC_{ij}(q,t) = q^{d_j} t^{-1} \sum_{k>0,\, i_k = j} (\varpi_i^\vee, T_{i_1}^{-1} \cdots T_{i_{k-1}}^{-1}(\alpha_j))_{q,t}

in the finite case, or its generalization for arbitrary type.

  • The inverse matrix admits the expansion

C(q,t)1=qDt1(id+A(q,t)+A(q,t)2+)C(q,t)^{-1} = q^D t^{-1} (\mathrm{id} + A(q,t) + A(q,t)^2 + \dots)

with A(q,t)=idqDt1C(q,t)A(q,t) = \mathrm{id} - q^D t^{-1} C(q,t) (Fujita et al., 2021).

3. Interrelation with Generalized Preprojective Algebras

The categorical interpretation relies on the generalized preprojective algebra Π\Pi associated to (C,D)(C,D) and a quiver Ω\Omega:

  • Π\Pi is defined as the quotient of the doubled quiver path algebra by specific homogeneous relations reflecting the Cartan data.
  • The bigrading structure on Π\Pi assigns degrees in powers of qq and tt based on the entries of CC and DD.
  • The algebra Π\Pi is constructed in the sense of Geiß - Leclerc - Schröer for the Langlands dual (transposed Cartan) (Fujita et al., 2021, Fujita et al., 2023).

The entries of the deformed Cartan matrix and their inverses have categorical realization:

  • Each Cij(q,t)C_{ij}(q,t) is recovered from graded dimensions in Π\Pi-modules

Cij(q,t)=qdjtdimΓ(eiPˉj)C_{ij}(q,t) = q^{-d_j} t \dim_\Gamma(e_i \bar P_j)

where Pˉj\bar P_j is an indecomposable projective with modifications imposed by the algebra relations (Fujita et al., 2023).

  • Combinatorially, coefficients in C(q,t)1C(q,t)^{-1} enumerate the graded Euler–Poincaré pairings between explicit module classes: cij(u,v)c_{ij}(u,v) is (up to sign) the dimension of HomΠ(qutvEi,Sj)\mathrm{Hom}_\Pi(q^{u}t^{v}E_i,S_j) for suitable Ei,SjE_i, S_j (Fujita et al., 2021).

4. Representative Examples in Low Rank

In type A2A_2 (I={1,2},d1=d2=1I = \{1,2\}, d_1 = d_2 = 1)

C(q,t)=(qt1+q1t1 1qt1+q1t)C(q,t) = \begin{pmatrix} q t^{-1} + q^{-1} t & -1 \ -1 & q t^{-1} + q^{-1} t \end{pmatrix}

with determinant Δ(q,t)=q2t2+1+q2t2\Delta(q,t) = q^2 t^{-2} + 1 + q^{-2} t^2 and

C(q,t)1=1Δ(q,t)(qt1+q1t1 1qt1+q1t)C(q,t)^{-1} = \frac{1}{\Delta(q,t)} \begin{pmatrix} q t^{-1} + q^{-1} t & 1 \ 1 & q t^{-1} + q^{-1} t \end{pmatrix}

(Fujita et al., 2021, Fujita et al., 2023).

In type A3A_3 (di=1d_i = 1), C(q,t)C(q,t) is tridiagonal with off-diagonal entries 1-1, and C(q,t)1C(q,t)^{-1} expressed either by summing a series in (qt1)(qt^{-1}) or via adjugate formula (Fujita et al., 2021).

5. Comparison to Alternative Deformations

The mass-deformed Cartan matrices introduced by Kimura–Pestun for quiver W\mathcal{W}-algebras feature extra parameters (q1,q2,μe)(q_1, q_2, \mu_e). Mapping these via

q1q2,q2t2,μeqdijt1μij(g)q_1 \mapsto q^2,\quad q_2 \mapsto t^{-2},\quad \mu_e \mapsto q^{d_{ij}} t^{-1} \mu_{ij}^{(g)}

aligns their mass-deformed matrix ij_{ij} with qDtC(q,t,{μ})q^{-D} t C(q, t, \{\mu\}) precisely when fij=1f_{ij}=1 or fji=1f_{ji}=1 for all adjacent i,ji, j (Fujita et al., 2023). This equivalence holds for all symmetric, finite, and untwisted-affine types, ensuring the two deformation frameworks coincide in these cases.

6. Homological and Langlands Dual Structures

The categorical context is strengthened by:

  • Braid-group generators categorified via tensoring with ideals Ji=Π(1ei)ΠJ_i = \Pi(1-e_i)\Pi, acting on the Grothendieck group as the algebraic TiT_i.
  • Periodic projective resolutions for key modules (generalized simples EiE_i, injectives IiI_i), whose kernels and Euler–Poincaré pairings encode the periodicity and duality reflecting the Cartan structure and its deformation (Fujita et al., 2021).
  • Switching from (C,D)(C, D) to (tC,D1r)({}^t C, D^{-1} r) interchanges the gradings (qt)(q \leftrightarrow t) and matches quantum affine Uq(g^)U'_q(\widehat{g}) with its Langlands dual Ut(Lg^)U'_t({}^L\widehat{g}), in line with deformed Wq,t\mathcal{W}_{q,t}-algebras.

7. Applications and Conjectural Correspondence

The (q,t)(q,t)-deformation is fundamentally linked to monoidal categorification problems for quantum affine algebras:

  • Generic kernels Kk(i)K_k^{(i)}—periodic self-extensions fitting into exact sequences—yield first extension groups Ext1(Kk(i),Kl(j))\mathrm{Ext}^1(K_k^{(i)}, K_l^{(j)}) calculated via the coefficients cij(u)c_{ij}(u) in C(q,1)1C(q,1)^{-1} (Fujita et al., 2021).
  • The central conjecture posits a correspondence between the pole-orders of normalized RR-matrix denominators for Kirillov–Reshetikhin modules and the graded dimensions of Ext1\mathrm{Ext}^1 spaces:

o(Vk(i),Vl(j))=dimqExt1(Kk(i),Kl(j))\mathfrak{o}(V_k^{(i)}, V_l^{(j)}) = \dim_q \mathrm{Ext}^1(K_k^{(i)}, K_l^{(j)})

validated across non-simply-laced and exceptional types (Fujita et al., 2021).

  • This correspondence indicates a deep connection between monoidal and additive-categorical structures in quantum algebra.

The theory of (q,t)(q,t)-deformed Cartan matrices and their categorical avatars provides a unified framework for grading, duality, and extension phenomena in quantum groups, quiver varieties, and their monoidal categorifications (Fujita et al., 2021, Fujita et al., 2023).

Whiteboard

Follow Topic

Get notified by email when new papers are published related to 2-Parameter Deformation of Cartan Matrices.