Papers
Topics
Authors
Recent
2000 character limit reached

176Lu+ Single-Ion Optical References

Updated 12 December 2025
  • 176Lu+ optical references are advanced atomic systems that employ two ultranarrow clock transitions and hyperfine averaging to realize exceptionally stable frequency standards.
  • They incorporate precise g-factor metrology and innovative techniques like hyper-Ramsey interrogation to suppress systematic shifts and reach uncertainties below 10⁻¹⁸.
  • Experimental protocols such as correlation spectroscopy and robust trap designs enable direct frequency comparisons, supporting efforts to redefine the SI second.

Singly-ion optical references based on 176^{176}Lu+^+ exploit two ultranarrow clock transitions from the 1S0^1S_0 ground state to long-lived excited states in a single trapped ion, enabling optical frequency standards with exceptional insensitivity to electromagnetic perturbations and minimal systematic uncertainty. These systems utilize a combination of hyperfine averaging, unique atomic structure, and advanced experimental protocols to attain state-of-the-art accuracy below the 101810^{-18} fractional level.

1. Atomic Structure and Clock Transitions

176^{176}Lu+^+ possesses a 1S0^1S_0 ground state (J=0J=0, I=7I=7), with candidate clock transitions to the metastable 3D1^3D_1 (J=1J=1) and 3D2^3D_2 (J=2J=2) states. The relevant transitions and properties are:

Transition Wavelength (nm) Natural Lifetime Multipole Type Typical FF' Range
1S03D1^1S_0 \to {}^3D_1 848 \sim1 week M1 F=6,7,8F=6,7,8
1S03D2^1S_0 \to {}^3D_2 804 \sim20s\,s E2 F=5,6,7,8,9F=5,6,7,8,9

The 1S03D1^1S_0\to{}^3D_1 line exhibits a fractional blackbody radiation (BBR) shift of 1.36(9)×1018-1.36(9)\times 10^{-18}, the lowest amongst established clocks, while 1S03D2^1S_0\to{}^3D_2 has a larger but precisely calculable shift of +2.70(21)×1017+2.70(21)\times 10^{-17} (Arnold et al., 2017). Both transitions are extremely narrow in natural linewidth, with Fourier-limited interrogation times beyond practical experimental cycles.

2. Hyperfine Averaging, gg-Factor Metrology, and Quadrupole Shifts

High-accuracy operation of Lu+^+ optical references requires elimination of Zeeman and tensor-shift systematics. Hyperfine averaging across three (3D1^3D_1) or five (3D2^3D_2) FF-manifolds, combined with mF=0m_F=0 interrogation and microwave-assisted protocols, suppresses first-order Zeeman and quadrupole shifts by orders of magnitude. Recent measurements of the Landé gg-factors for 3D2^3D_2, combined with theoretical analysis, yield:

  • gF=5=0.38574760(19)g_{F=5} = -0.38574760(19)
  • gF=6=0.110209651(53)g_{F=6} = -0.110209651(53)
  • gF=7=0.061911003(31)g_{F=7} = 0.061911003(31)
  • gF=8=0.176565694(86)g_{F=8} = 0.176565694(86)
  • gF=9=0.25674126(12)g_{F=9} = 0.25674126(12)

to a relative inaccuracy of 5×1075\times 10^{-7} (Zhao et al., 22 Jul 2025). Hyperfine-mediated corrections to both Landé factors and quadrupole moments have been quantitatively characterized, with the residual hyperfine-averaged quadrupole moment for 1S03D2^1S_0\leftrightarrow{}^3D_2 determined as δΘ=1.59(34)×104ea02\delta\Theta=1.59(34)\times 10^{-4}\,ea_0^2. For the hyperfine-averaged 1S03D1^1S_0\leftrightarrow{}^3D_1 transition, the analogous residual quadrupole is \sim–2.5×104ea02\,\times 10^{-4}\,ea_0^2 (Zhang et al., 2020). These residuals establish a systematic floor for quadrupole-shift-induced uncertainties at the low 101910^{-19} level under typical trapping conditions.

3. Systematic Shifts and Uncertainty Budget

Systematic shifts relevant to 176^{176}Lu+^+ optical clocks include quadratic Zeeman, AC Zeeman, Doppler, excess micromotion, probe-induced Stark, residual quadrupole, and BBR effects.

A representative budget for both 3D1^3D_1 and 3D2^3D_2 references for standard operating conditions (B00.1B_0\sim0.1 mT, T=300T=300 K, trap rf Ωrf/2π20\Omega_\mathrm{rf}/2\pi\sim20 MHz) is:

Effect 3D1^3D_1 (×1018\times10^{-18}) 3D2^3D_2 (×1018\times10^{-18})
Quadratic Zeeman –138 (0.04) +48.1 (0.04)
AC Zeeman (rf) +0.54 (0.01) –10.5 (0.11)
Doppler (thermal) –0.13 (0.06) –0.13 (0.06)
Micromotion (excess) –0.10 (0.10) –0.10 (0.10)
Residual quadrupole +0.22 (0.02) ≲+0.50 (0.10)
BBR (300 K) –1.36 (0.16) +27.0 (1.80)
Total (excl. 3D2^3D_2 BBR) ≃0.30 ≃0.28

Dominant contributions are quadratic Zeeman and, for 3D2^3D_2, the BBR shift. The total budget for 3D1^3D_1 is σtotal3×1019\sigma_\text{total} \lesssim 3\times10^{-19} under typical conditions (Arnold et al., 25 Apr 2024, Arnold et al., 8 Dec 2025). In direct comparison of two independent systems, the agreement at the 19th19^\text{th} fractional digit is demonstrated, with a total uncertainty of 5.8×10195.8\times10^{-19} (Arnold et al., 8 Dec 2025).

4. Experimental Techniques and Clock Operation

176^{176}Lu+^+ clocks utilize a single ion in a linear Paul trap, with three-axis micromotion compensation and Doppler-limited secular motion. State preparation and detection employ laser cooling on 3D13P0^3D_1 \to ^3P_0 at 646 nm, optical pumping, and electron shelving. Interrogation of the 1S03D1^1S_0\rightarrow{}^3D_1 clock transition is accomplished by a highly stabilized laser at 848 nm, with interleaved microwave or optical transitions realizing the hyperfine average:

νHA=13(ν6+ν7+ν8).\nu_{\mathrm{HA}} = \frac{1}{3}(\nu_6 + \nu_7 + \nu_8).

Advanced techniques such as hyper-Ramsey interrogation further suppress probe-induced shifts (Zhang et al., 14 Feb 2025, Arnold et al., 8 Dec 2025). Direct frequency measurement is referenced to International Atomic Time (TAI) or hydrogen masers via optical frequency combs and GNSS PPP links, attaining uncertainties below 101510^{-15} (Zhang et al., 14 Feb 2025).

Correlation spectroscopy between two independent 176^{176}Lu+^+ systems enables noise rejection and clock comparison, with an observed instability σy(τ)=4.8×1016(τ/s)1/2\sigma_y(\tau) = 4.8\times10^{-16}(\tau/\mathrm{s})^{-1/2} and statistical agreement at the 101910^{-19} level after 200 hours of averaging (Arnold et al., 8 Dec 2025).

5. Blackbody Radiation Shift and Environmental Insensitivity

The BBR shift is determined by the differential scalar polarizability between clock states. Direct measurement at 10.6 μ\mum yields Δα0,1(10.6μm)=0.059(4)a.u.\Delta\alpha_{0,1}(10.6\,\mu\mathrm{m}) = 0.059(4)\,\mathrm{a.u.} for 1S03D1^1S_0 \to {}^3D_1 and 1.17(9)a.u.-1.17(9)\,\mathrm{a.u.} for 1S03D2^1S_0 \to {}^3D_2. The static polarizability is extrapolated to Δα0,1(0)=0.018(6)a.u.\Delta\alpha_{0,1}(0) = 0.018(6)\,\mathrm{a.u.} (Arnold et al., 2017). The resulting BBR-induced fractional frequency shifts at 300 K are –1.36(9) × 10{-18} (3D1^3D_1) and +2.70(21) × 10{-17} (3D2^3D_2), with uncertainties <<2×10{-19}forfor3D_1</sup></sup>under±5Ktemperaturecontrol.</p><p>Lu</sup></sup> under ±5 K temperature control.</p> <p>Lu^+sheavy<ahref="https://www.emergentmind.com/topics/multiagentsystemsmass"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">mass</a>(’s heavy <a href="https://www.emergentmind.com/topics/multi-agent-systems-mass" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">mass</a> (A=176)substantiallysuppressesthermalandmicromotioninducedDopplereffects,andthedifferentialpolarizabilitynearzeroensuresstabilityagainststrayelectricfields(<ahref="/papers/1806.02909"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Porsevetal.,2018</a>,<ahref="/papers/1712.00240"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Arnoldetal.,2017</a>).Residualsecularmotionandcollisionalshiftsarenegligibleatthe) substantially suppresses thermal and micromotion-induced Doppler effects, and the differential polarizability near zero ensures stability against stray electric fields (<a href="/papers/1806.02909" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Porsev et al., 2018</a>, <a href="/papers/1712.00240" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Arnold et al., 2017</a>). Residual secular motion and collisional shifts are negligible at the 10^{-19}levelinUHVenvironments.</p><h2class=paperheadingid=frequencyratiomeasurementandinterlaboratoryvalidation>6.FrequencyRatioMeasurementandInterLaboratoryValidation</h2><p>Simultaneousoperationofbothclocktransitionsonasingleionallowsinsitumeasurementofthefrequencyratio level in UHV environments.</p> <h2 class='paper-heading' id='frequency-ratio-measurement-and-inter-laboratory-validation'>6. Frequency Ratio Measurement and Inter-Laboratory Validation</h2> <p>Simultaneous operation of both clock transitions on a single ion allows in situ measurement of the frequency ratio R = \nu_2/\nu_1.Environmentalandrelativisticperturbationscanceltobelow. Environmental and relativistic perturbations cancel to below 10^{-20}in in R,makingitarobustreferenceforinterlaboratorycomparisons.ThedominantresidualisthedifferentialBBRshift.At300K,, making it a robust reference for inter-laboratory comparisons. The dominant residual is the differential BBR shift. At 300 K, \Delta R/R \approx 7\times 10^{-32}(<ahref="/papers/2404.16414"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Arnoldetal.,25Apr2024</a>).Operationundercryogenicconditionsreducesthisto (<a href="/papers/2404.16414" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Arnold et al., 25 Apr 2024</a>). Operation under cryogenic conditions reduces this to <10^{-19},limitedbytrapandhyperRamseyeffects.</p><p>ThisprotocolsupportsfutureSIsecondredefinitioneffortsandsearchforphysicsbeyondtheStandardModel;comparisonof, limited by trap and hyper-Ramsey effects.</p> <p>This protocol supports future SI second redefinition efforts and search for physics beyond the Standard Model; comparison of Rbetweenremotesystemssuppressescommonmodesystematicsanddirectlyteststheaccuracyoflocaluncertaintybudgets.</p><h2class=paperheadingid=prospectsmethodologicaldevelopmentsandadvancedschemes>7.Prospects,MethodologicalDevelopments,andAdvancedSchemes</h2><p>Continuedreductionofsystematicuncertaintiesbelowthe between remote systems suppresses common-mode systematics and directly tests the accuracy of local uncertainty budgets.</p> <h2 class='paper-heading' id='prospects-methodological-developments-and-advanced-schemes'>7. Prospects, Methodological Developments, and Advanced Schemes</h2> <p>Continued reduction of systematic uncertainties below the 10^{-19}levelemphasizestheimportanceofcharacterizinghyperfinemediatedcorrections,fieldgradients,andACStarkeffects.ContinuousdynamicaldecouplingemployingmultipleRFdrivescangenerateclocktransitionsimmunetofirstorderZeeman,quadrupole,andtensorACStarkshifts,withresidualinhomogeneousbroadening level emphasizes the importance of characterizing hyperfine-mediated corrections, field gradients, and AC Stark effects. Continuous dynamical decoupling employing multiple RF drives can generate clock transitions immune to first-order Zeeman, quadrupole, and tensor-AC-Stark shifts, with residual inhomogeneous broadening <1Hz,andthepotentialforinstabilityatthe Hz, and the potential for instability at the 10^{-16}/\sqrt{\tau}level(<ahref="/papers/1811.06732"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Aharonetal.,2018</a>).</p><p>InnovativemultiionandmixedisotopeclocksleveragingthelowBBRsensitivityandfavorableatomicstructureofLu level (<a href="/papers/1811.06732" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Aharon et al., 2018</a>).</p> <p>Innovative multi-ion and mixed-isotope clocks leveraging the low BBR sensitivity and favorable atomic structure of Lu^+promisefurtherimprovementinstabilityandnewscienceapplications,includingtestsof promise further improvement in stability and new science applications, including tests of \alphavariationandfundamentalconstantstability(<ahref="/papers/1806.02909"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Porsevetal.,2018</a>,<ahref="/papers/1602.05945"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Paezetal.,2016</a>).</p><h2class=paperheadingid=references>References</h2><ul><li>(<ahref="/papers/2507.16292"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Zhaoetal.,22Jul2025</a>):Landeˊgfactormeasurementsforthe5d6s-variation and fundamental constant stability (<a href="/papers/1806.02909" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Porsev et al., 2018</a>, <a href="/papers/1602.05945" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Paez et al., 2016</a>).</p> <h2 class='paper-heading' id='references'>References</h2> <ul> <li>(<a href="/papers/2507.16292" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Zhao et al., 22 Jul 2025</a>): Landé g-factor measurements for the 5d6s ^3DD_2hyperfinelevelsof hyperfine levels of ^{176}LuLu^+</li><li>(<ahref="/papers/2512.07346"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Arnoldetal.,8Dec2025</a>):Opticalclockswithaccuracyvalidatedatthe19thdigit</li><li>(<ahref="/papers/1712.00240"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Arnoldetal.,2017</a>):Blackbodyradiationshiftassessmentforalutetiumionclock</li><li>(<ahref="/papers/2502.10004"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Zhangetal.,14Feb2025</a>):AbsolutefrequencymeasurementofaLu</li> <li>(<a href="/papers/2512.07346" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Arnold et al., 8 Dec 2025</a>): Optical clocks with accuracy validated at the 19th digit</li> <li>(<a href="/papers/1712.00240" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Arnold et al., 2017</a>): Blackbody radiation shift assessment for a lutetium ion clock</li> <li>(<a href="/papers/2502.10004" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Zhang et al., 14 Feb 2025</a>): Absolute frequency measurement of a Lu^+ (^{3}\rm D_1)opticalfrequencystandardvialinktointernationalatomictime</li><li>(<ahref="/papers/2009.02889"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Zhangetal.,2020</a>):HyperfinemediatedeffectsinaLu optical frequency standard via link to international atomic time</li> <li>(<a href="/papers/2009.02889" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Zhang et al., 2020</a>): Hyperfine-mediated effects in a Lu^+opticalclock</li><li>(<ahref="/papers/1811.06732"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Aharonetal.,2018</a>):Robustopticalclocktransitionsintrappedions</li><li>(<ahref="/papers/1806.02909"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Porsevetal.,2018</a>):ClockrelatedpropertiesofLu optical clock</li> <li>(<a href="/papers/1811.06732" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Aharon et al., 2018</a>): Robust optical clock transitions in trapped ions</li> <li>(<a href="/papers/1806.02909" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Porsev et al., 2018</a>): Clock-related properties of Lu^+</li><li>(<ahref="/papers/2404.16414"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Arnoldetal.,25Apr2024</a>):Validatingalutetiumfrequencyreference</li><li>(<ahref="/papers/1602.05945"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Paezetal.,2016</a>):AtomicPropertiesofLu</li> <li>(<a href="/papers/2404.16414" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Arnold et al., 25 Apr 2024</a>): Validating a lutetium frequency reference</li> <li>(<a href="/papers/1602.05945" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Paez et al., 2016</a>): Atomic Properties of Lu^+</li><li>(<ahref="/papers/1901.04164"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Kaewuametal.,2019</a>):Spectroscopyofthe</li> <li>(<a href="/papers/1901.04164" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Kaewuam et al., 2019</a>): Spectroscopy of the ^1S_0to-to-^1D_2clocktransitionin clock transition in ^{176}LuLu^+</li><li>(<ahref="/papers/1707.02815"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Kaewuametal.,2017</a>):Laserspectroscopyof</li> <li>(<a href="/papers/1707.02815" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Kaewuam et al., 2017</a>): Laser spectroscopy of ^{176}LuLu^+$

Whiteboard

Follow Topic

Get notified by email when new papers are published related to $^{176}$Lu$^+$ Single-Ion Optical References.