Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Liftable mapping class groups of regular cyclic covers (1911.05682v2)

Published 13 Nov 2019 in math.GT

Abstract: Let $\mathrm{Mod}(S_g)$ be the mapping class group of the closed orientable surface of genus $g \geq 1$. For $k \geq 2$, we consider the standard $k$-sheeted regular cover $p_k: S_{k(g-1)+1} \to S_g$, and analyze the liftable mapping class group $\mathrm{LMod}{p_k}(S_g)$ associated with the cover $p_k$. In particular, we show that $\mathrm{LMod}{p_k}(S_g)$ is the stabilizer subgroup of $\mathrm{Mod}(S_g)$ with respect to a collection of vectors in $H_1(S_g,\mathbb{Z}k)$, and also derive a symplectic criterion for the liftability of a given mapping class under $p_k$. As an application of this criterion, we obtain a normal series of $\mathrm{LMod}{p_k}(S_g)$, which generalizes a well known normal series of congruence subgroups in $\mathrm{SL}(2,\mathbb{Z})$. Among other applications, we describe a procedure for obtaining a finite generating set for $\mathrm{LMod}_{p_k}(S_g)$ and examine the liftability of certain finite-order and pseudo-Anosov mapping classes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.