Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The order of convergence in the averaging principle for slow-fast systems of stochastic evolution equations in Hilbert spaces (2203.17071v4)

Published 31 Mar 2022 in math.PR

Abstract: In this work we are concerned with the study of the strong order of convergence in the averaging principle for slow-fast systems of stochastic evolution equations in Hilbert spaces with additive noise. In particular the stochastic perturbations are general Wiener processes, i.e their covariance operators are allowed to be not trace class. We prove that the slow component converges strongly to the averaged one with order of convergence $1/2$ which is known to be optimal. Moreover we apply this result to a slow-fast stochastic reaction diffusion system where the stochastic perturbation is given by a white noise both in time and space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.