Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach (1505.02100v2)

Published 8 May 2015 in cs.OH

Abstract: FPGA technology can offer significantly hi-gher performance at much lower power consumption than is available from CPUs and GPUs in many computational problems. Unfortunately, programming for FPGA (using ha-rdware description languages, HDL) is a difficult and not-trivial task and is not intuitive for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty the High Level Synthesis (HLS) approach is promoting by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but can also be successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for kernel density estimation (KDE) using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show that FPGA speedups, comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for FPGA devices is usually much less than typical power consumption of the present CPUs and GPUs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube