Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonlinear p-multigrid preconditioner for implicit time integration of compressible Navier--Stokes equations (2202.09733v1)

Published 20 Feb 2022 in math.NA, cs.NA, and physics.flu-dyn

Abstract: Within the framework of $ p $-adaptive flux reconstruction, we aim to construct efficient polynomial multigrid ($p$MG) preconditioners for implicit time integration of the Navier--Stokes equations using Jacobian-free Newton--Krylov (JFNK) methods. We hypothesise that in pseudo transient continuation (PTC), as the residual drops, the frequency of error modes that dictates the convergence rate gets higher and higher. We apply nonlinear $p$MG solvers to stiff steady problems at low Mach number ($\mathrm{Ma}=10{-3}$) to verify our hypothesis. It is demonstrated that once the residual drops by a few orders of magnitude, improved smoothing on intermediate $ p $-sublevels will not only maintain the stability of $ p $MG at large time steps but also improve the convergence rate. For the unsteady Navier--Stokes equations, we elaborate how to construct nonlinear preconditioners using pseudo transient continuation for the matrix-free generalized minimal residual (GMRES) method used in explicit first stage, singly diagonally implicit Runge--Kutta (ESDIRK) methods, and linearly implicit Rosenbrock--Wanner (ROW) methods. Given that at each time step the initial guess in the nonlinear solver is not distant from the converged solution, we recommend a two-level $p{p_0\text{-}p_0/2} $ or even $ p{p_0\text{-}(p_0-1)} $ $p$-hierarchy for optimal efficiency with a matrix-based smoother on the coarser level based on our hypothesis. It is demonstrated that insufficient smoothing on intermediate $p$-sublevels will deteriorate the performance of $p$MG preconditioner greatly. (See full abstract in the paper.)

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.