Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite-Particle Rates for Regularized Stein Variational Gradient Descent

Published 5 Feb 2026 in stat.ML, cs.LG, and math.ST | (2602.05172v1)

Abstract: We derive finite-particle rates for the regularized Stein variational gradient descent (R-SVGD) algorithm introduced by He et al. (2024) that corrects the constant-order bias of the SVGD by applying a resolvent-type preconditioner to the kernelized Wasserstein gradient. For the resulting interacting $N$-particle system, we establish explicit non-asymptotic bounds for time-averaged (annealed) empirical measures, illustrating convergence in the \emph{true} (non-kernelized) Fisher information and, under a $\mathrm{W}_1\mathrm{I}$ condition on the target, corresponding $\mathrm{W}_1$ convergence for a large class of smooth kernels. Our analysis covers both continuous- and discrete-time dynamics and yields principled tuning rules for the regularization parameter, step size, and averaging horizon that quantify the trade-off between approximating the Wasserstein gradient flow and controlling finite-particle estimation error.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 10 likes about this paper.