Papers
Topics
Authors
Recent
Search
2000 character limit reached

Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection

Published 3 Feb 2026 in cs.CL and cs.LG | (2602.03216v1)

Abstract: The quadratic complexity of attention remains the central bottleneck in long-context inference for LLMs. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 11 tweets with 0 likes about this paper.