Papers
Topics
Authors
Recent
2000 character limit reached

Sampling-Free Diffusion Transformers for Low-Complexity MIMO Channel Estimation

Published 2 Feb 2026 in eess.SP | (2602.02202v1)

Abstract: Diffusion model-based channel estimators have shown impressive performance but suffer from high computational complexity because they rely on iterative reverse sampling. This paper proposes a sampling-free diffusion transformer (DiT) for low-complexity MIMO channel estimation, termed SF-DiT-CE. Exploiting angular-domain sparsity of MIMO channels, we train a lightweight DiT to directly predict the clean channels from their perturbed observations and noise levels. At inference, the least square (LS) estimate and estimation noise condition the DiT to recover the channel in a single forward pass, eliminating iterative sampling. Numerical results demonstrate that our method achieves superior estimation accuracy and robustness with significantly lower complexity than state-of-the-art baselines.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.