FORLER: Federated Offline Reinforcement Learning with Q-Ensemble and Actor Rectification
Abstract: In Internet-of-Things systems, federated learning has advanced online reinforcement learning (RL) by enabling parallel policy training without sharing raw data. However, interacting with real environments online can be risky and costly, motivating offline federated RL (FRL), where local devices learn from fixed datasets. Despite its promise, offline FRL may break down under low-quality, heterogeneous data. Offline RL tends to get stuck in local optima, and in FRL, one device's suboptimal policy can degrade the aggregated model, i.e., policy pollution. We present FORLER, combining Q-ensemble aggregation on the server with actor rectification on devices. The server robustly merges device Q-functions to curb policy pollution and shift heavy computation off resource-constrained hardware without compromising privacy. Locally, actor rectification enriches policy gradients via a zeroth-order search for high-Q actions plus a bespoke regularizer that nudges the policy toward them. A $δ$-periodic strategy further reduces local computation. We theoretically provide safe policy improvement performance guarantees. Extensive experiments show FORLER consistently outperforms strong baselines under varying data quality and heterogeneity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.