Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weyl-Dirac nodal line phonons with type-selective surface states

Published 2 Feb 2026 in cond-mat.mes-hall and cond-mat.mtrl-sci | (2602.01841v1)

Abstract: The band complex formed by multiple topological states has attracted extensive attention for the emergent properties produced by the interplay among the constituent states. Here, based on group theory analysis, we present a scheme for rapidly identifying the Weyl-Dirac nodal lines (a complex of Weyl and Dirac nodal lines) in bosonic systems. We find only 5 of the 230 space groups host Weyl-Dirac nodal line phonons. Notably, the Dirac nodal line resides along the high-symmetry line, whereas the Weyl nodal line is distributed on the high-symmetry plane and is interconnected with the Dirac nodal line, jointly forming a composite nodal network structure. Unlike traditional nodal nets, this nodal network exhibits markedly distinct surface states on different surfaces, which can be attributed to the fundamental differences in the topological properties between the Weyl and Dirac nodal lines. This unique property thus allows the material to present distinct surface states in a termination-selective manner. Furthermore, by first-principles calculations, we identify the materials NdRhO${3}$ and ZnSe${2}$O$_{5}$ as candidate examples to elaborate the Weyl-Dirac nodal line and their related topological features. Our work provides an insight for exploring and leveraging topological properties in systems with coexisting multiple topological states.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.