Papers
Topics
Authors
Recent
Search
2000 character limit reached

Softmax Linear Attention: Reclaiming Global Competition

Published 2 Feb 2026 in cs.LG and cs.AI | (2602.01744v1)

Abstract: While linear attention reduces the quadratic complexity of standard Transformers to linear time, it often lags behind in expressivity due to the removal of softmax normalization. This omission eliminates \emph{global competition}, a critical mechanism that enables models to sharply focus on relevant information amidst long-context noise. In this work, we propose \textbf{Softmax Linear Attention (SLA)}, a framework designed to restore this competitive selection without sacrificing efficiency. By lifting the softmax operation from the token level to the head level, SLA leverages attention heads as coarse semantic slots, applying a competitive gating mechanism to dynamically select the most relevant subspaces. This reintroduces the ``winner-take-all'' dynamics essential for precise retrieval and robust long-context understanding. Distinct from prior methods that focus on refining local kernel functions, SLA adopts a broader perspective by exploiting the higher-level multi-head aggregation structure. Extensive experiments demonstrate that SLA consistently enhances state-of-the-art linear baselines (RetNet, GLA, GDN) across language modeling and long-context benchmarks, particularly in challenging retrieval scenarios where it significantly boosts robustness against noise, validating its capability to restore precise focus while maintaining linear complexity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.