Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mechanistic Indicators of Steering Effectiveness in Large Language Models

Published 2 Feb 2026 in cs.CL | (2602.01716v1)

Abstract: Activation-based steering enables LLMs to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.