Papers
Topics
Authors
Recent
Search
2000 character limit reached

A $5$-Approximation Analysis for the Cover Small Cuts Problem

Published 1 Feb 2026 in cs.DS | (2602.01462v1)

Abstract: In the Cover Small Cuts problem, we are given a capacitated (undirected) graph $G=(V,E,u)$ and a threshold value $λ$, as well as a set of links $L$ with end-nodes in $V$ and a non-negative cost for each link $\ell\in L$; the goal is to find a minimum-cost set of links such that each non-trivial cut of capacity less than $λ$ is covered by a link. Bansal, Cheriyan, Grout, and Ibrahimpur (arXiv:2209.11209, Algorithmica 2024) showed that the WGMV primal-dual algorithm, due to Williamson, Goemans, Mihail, and Vazirani (Combinatorica, 1995), achieves approximation ratio $16$ for the Cover Small Cuts problem; their analysis uses the notion of a pliable family of sets that satisfies a combinatorial property. Later, Bansal (arXiv:2308.15714v2, IPCO 2025) and then Nutov (arXiv:2504.03910, MFCS 2025) proved that the same algorithm achieves approximation ratio $6$. We show that the same algorithm achieves approximation ratio $5$, by using a stronger notion, namely, a pliable family of sets that satisfies symmetry and structural submodularity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.