Papers
Topics
Authors
Recent
Search
2000 character limit reached

SNIP: An Adaptive Mixed Precision Framework for Subbyte Large Language Model Training

Published 1 Feb 2026 in cs.LG and cs.AR | (2602.01410v1)

Abstract: Training LLMs efficiently while preserving model quality poses significant challenges, particularly with subbyte precision supported by state-of-the-art GPUs. Current mixed-precision training approaches either apply uniform precision to all GEMM operations or rely on heuristic-based methods that fail to generalize during training, leading to suboptimal convergence and instability. To address these challenges, this paper introduces SNIP, a fine-grained adaptive mixed-precision training framework for LLM pretraining that supports subbyte precision. SNIP periodically collects statistics on activations, gradients, and optimizer states to assess the precision loss impact on model quality. We define two key metrics: loss divergence in the forward pass, caused by quantization-induced increases in training loss, and weight divergence in the backward pass, which measures error propagation through gradients affecting model updates. These metrics guide an Integer Linear Programming (ILP) problem that systematically optimizes layerwise precision to minimize overall quality loss while meeting efficiency targets. Experiments on 1B, 3B, 7B and 70B Llama-like models demonstrate that SNIP consistently outperforms existing baselines, reducing FLOPs by up to 80% while preserving model quality across different model sizes and training phases with minimal computational overhead.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.