Papers
Topics
Authors
Recent
Search
2000 character limit reached

QUASAR: A Universal Autonomous System for Atomistic Simulation and a Benchmark of Its Capabilities

Published 30 Jan 2026 in cond-mat.mtrl-sci and cs.AI | (2602.00185v1)

Abstract: The integration of LLMs into materials science offers a transformative opportunity to streamline computational workflows, yet current agentic systems remain constrained by rigid tool-calling approaches and narrowly scoped agents. In this work, we introduce QUASAR, a universal autonomous system for atomistic simulation designed to facilitate production-grade scientific discovery. QUASAR autonomously orchestrates complex multi-scale workflows across diverse methods, including density functional theory, machine learning potentials, molecular dynamics, and Monte Carlo simulations. The system incorporates robust mechanisms for adaptive planning, context-efficient memory management, and hybrid knowledge retrieval to navigate real-world research scenarios without human intervention. We benchmark QUASAR against a series of three-tiered tasks, progressing from routine tasks to frontier research challenges such as photocatalyst screening and novel material assessment. These results suggest that QUASAR can function as a general atomistic reasoning system rather than a task-specific automation framework. They also provide initial evidence supporting the potential deployment of agentic AI as a component of computational chemistry research workflows, while identifying areas requiring further development.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.