Papers
Topics
Authors
Recent
Search
2000 character limit reached

The GT-Score: A Robust Objective Function for Reducing Overfitting in Data-Driven Trading Strategies

Published 22 Jan 2026 in q-fin.ST and cs.LG | (2602.00080v1)

Abstract: Overfitting remains a critical challenge in data-driven financial modeling, where ML systems learn spurious patterns in historical prices and fail out of sample and in deployment. This paper introduces the GT-Score, a composite objective function that integrates performance, statistical significance, consistency, and downside risk to guide optimization toward more robust trading strategies. This approach directly addresses critical pitfalls in quantitative strategy development, specifically data snooping during optimization and the unreliability of statistical inference under non-normal return distributions. Using historical stock data for 50 S&P 500 companies spanning 2010-2024, we conduct an empirical evaluation that includes walk-forward validation with nine sequential time splits and a Monte Carlo study with 15 random seeds across three trading strategies. In walk-forward validation, GT-Score improves the generalization ratio (validation return divided by training return) by 98% relative to baseline objective functions. Paired statistical tests on Monte Carlo out-of-sample returns indicate statistically detectable differences between objective functions (p < 0.01 for comparisons with Sortino and Simple), with small effect sizes. These results suggest that embedding an anti-overfitting structure into the objective can improve the reliability of backtests in quantitative research. Reproducible code and processed result files are provided as supplementary materials.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.