Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Multi-Rater Annotations to Calibrate Object Detectors in Microscopy Imaging

Published 30 Jan 2026 in cs.CV | (2601.23007v1)

Abstract: Deep learning-based object detectors have achieved impressive performance in microscopy imaging, yet their confidence estimates often lack calibration, limiting their reliability for biomedical applications. In this work, we introduce a new approach to improve model calibration by leveraging multi-rater annotations. We propose to train separate models on the annotations from single experts and aggregate their predictions to emulate consensus. This improves upon label sampling strategies, where models are trained on mixed annotations, and offers a more principled way to capture inter-rater variability. Experiments on a colorectal organoid dataset annotated by two experts demonstrate that our rater-specific ensemble strategy improves calibration performance while maintaining comparable detection accuracy. These findings suggest that explicitly modelling rater disagreement can lead to more trustworthy object detectors in biomedical imaging.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.