Papers
Topics
Authors
Recent
2000 character limit reached

The Energy Impact of Domain Model Design in Classical Planning

Published 29 Jan 2026 in cs.AI and cs.SE | (2601.21967v1)

Abstract: AI research has traditionally prioritised algorithmic performance, such as optimising accuracy in machine learning or runtime in automated planning. The emerging paradigm of Green AI challenges this by recognising energy consumption as a critical performance dimension. Despite the high computational demands of automated planning, its energy efficiency has received little attention. This gap is particularly salient given the modular planning structure, in which domain models are specified independently of algorithms. On the other hand, this separation also enables systematic analysis of energy usage through domain model design. We empirically investigate how domain model characteristics affect the energy consumption of classical planners. We introduce a domain model configuration framework that enables controlled variation of features, such as element ordering, action arity, and dead-end states. Using five benchmark domains and five state-of-the-art planners, we analyse energy and runtime impacts across 32 domain variants per benchmark. Results demonstrate that domain-level modifications produce measurable energy differences across planners, with energy consumption not always correlating with runtime.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.