Papers
Topics
Authors
Recent
2000 character limit reached

Mixed-Precision Training and Compilation for RRAM-based Computing-in-Memory Accelerators

Published 29 Jan 2026 in cs.LG and cs.ET | (2601.21737v1)

Abstract: Computing-in-Memory (CIM) accelerators are a promising solution for accelerating Machine Learning (ML) workloads, as they perform Matrix-Vector Multiplications (MVMs) on crossbar arrays directly in memory. Although the bit widths of the crossbar inputs and cells are very limited, most CIM compilers do not support quantization below 8 bit. As a result, a single MVM requires many compute cycles, and weights cannot be efficiently stored in a single crossbar cell. To address this problem, we propose a mixed-precision training and compilation framework for CIM architectures. The biggest challenge is the massive search space, that makes it difficult to find good quantization parameters. This is why we introduce a reinforcement learning-based strategy to find suitable quantization configurations that balance latency and accuracy. In the best case, our approach achieves up to a 2.48x speedup over existing state-of-the-art solutions, with an accuracy loss of only 0.086 %.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.