ScholarGym: Benchmarking Deep Research Workflows on Academic Literature Retrieval
Abstract: Tool-augmented LLMs have advanced from single-turn question answering to deep research workflows that iteratively plan queries, invoke external tools, and synthesize information to address complex information needs. Evaluating such workflows presents a fundamental challenge: reliance on live APIs introduces non-determinism, as tool invocations may yield different results across runs due to temporal drift, rate limiting, and evolving backend states. This variance undermines reproducibility and invalidates cross-system comparisons. We present ScholarGym, a simulation environment for reproducible evaluation of deep research workflows on academic literature. The environment decouples workflow components into query planning, tool invocation, and relevance assessment, enabling fine-grained analysis of each stage under controlled conditions. Built on a static corpus of 570K papers with deterministic retrieval, ScholarGym provides 2,536 queries with expert-annotated ground truth. Experiments across diverse backbone models reveal how reasoning capabilities, planning strategies, and selection mechanisms interact over iterative refinement.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.