Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Confidence Gating in Multi-Agent Collaboration for Efficient and Optimized Code Generation

Published 29 Jan 2026 in cs.SE and cs.AI | (2601.21469v1)

Abstract: While LLMs have catalyzed breakthroughs in automated code generation, Small LLMs (SLMs) often encounter reasoning bottlenecks and failure loops when addressing complex logical requirements. To overcome these challenges, we propose DebateCoder, a multi-agent collaborative framework designed to improve the reasoning ability of SLMs (e.g., Pangu-1B) in resource-constrained environments. DebateCoder uses a structured role-playing protocol with three agents: User Agent (A_UA), Technical Agent (A_TA), and Quality Assurance Agent (A_QA). It also includes an Adaptive Confidence Gating mechanism with a 95% threshold to balance accuracy and inference efficiency. In addition, we introduce a multi-turn deliberation module and a reviewer-guided analytical debugging loop for orthogonal pre-generation debate and post-generation refinement. Experiments on HumanEval and MBPP show that DebateCoder achieves 70.12% Pass@1 on HumanEval, outperforming MapCoder while reducing API overhead by about 35%. These results indicate that collaborative protocols can mitigate limitations of small-parameter models and provide a scalable, efficient approach to high-quality automated software engineering.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.