Papers
Topics
Authors
Recent
Search
2000 character limit reached

PhaseCoder: Microphone Geometry-Agnostic Spatial Audio Understanding for Multimodal LLMs

Published 28 Jan 2026 in cs.SD, cs.AI, and eess.AS | (2601.21124v1)

Abstract: Current multimodal LLMs process audio as a mono stream, ignoring the rich spatial information essential for embodied AI. Existing spatial audio models, conversely, are constrained to fixed microphone geometries, preventing deployment across diverse devices. We present PhaseCoder, a transformer-only spatial audio encoder that is agnostic to microphone geometry. PhaseCoder takes raw multichannel audio and microphone coordinates as inputs to perform localization and produces robust spatial embeddings. We demonstrate that Gemma 3n LLM can be fine-tuned to reason over "Spatial Audio Tokens" produced by PhaseCoder. We show our encoder achieves state-of-the-art results on microphone-invariant localization benchmarks and, for the first time, enables an LLM to perform complex spatial reasoning and targeted transcription tasks from an arbitrary microphone array.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 10 likes about this paper.