Papers
Topics
Authors
Recent
Search
2000 character limit reached

Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning

Published 28 Jan 2026 in cs.LG, cs.AI, and cs.CL | (2601.20829v1)

Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of LLMs, yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 9 tweets with 1 like about this paper.