Papers
Topics
Authors
Recent
Search
2000 character limit reached

Audit Trails for Accountability in Large Language Models

Published 28 Jan 2026 in cs.CY | (2601.20727v1)

Abstract: LLMs are increasingly embedded in consequential decisions across healthcare, finance, employment, and public services. Yet accountability remains fragile because process transparency is rarely recorded in a durable and reviewable form. We propose LLM audit trails as a sociotechnical mechanism for continuous accountability. An audit trail is a chronological, tamper-evident, context-rich ledger of lifecycle events and decisions that links technical provenance (models, data, training and evaluation runs, deployments, monitoring) with governance records (approvals, waivers, and attestations), so organizations can reconstruct what changed, when, and who authorized it. This paper contributes: (1) a lifecycle framework that specifies event types, required metadata, and governance rationales; (2) a reference architecture with lightweight emitters, append only audit stores, and an auditor interface supporting cross organizational traceability; and (3) a reusable, open-source Python implementation that instantiates this audit layer in LLM workflows with minimal integration effort. We conclude by discussing limitations and directions for adoption.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.