Papers
Topics
Authors
Recent
2000 character limit reached

Towards Compact and Robust DNNs via Compression-aware Sharpness Minimization

Published 28 Jan 2026 in cs.CV and cs.AI | (2601.20301v1)

Abstract: Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.