Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bridging Instead of Replacing Online Coding Communities with AI through Community-Enriched Chatbot Designs

Published 26 Jan 2026 in cs.HC | (2601.18697v1)

Abstract: LLM-based chatbots like ChatGPT have become popular tools for assisting with coding tasks. However, they often produce isolated responses and lack mechanisms for social learning or contextual grounding. In contrast, online coding communities like Kaggle offer socially mediated learning environments that foster critical thinking, engagement, and a sense of belonging. Yet, growing reliance on LLMs risks diminishing participation in these communities and weakening their collaborative value. To address this, we propose Community-Enriched AI, a design paradigm that embeds social learning dynamics into LLM-based chatbots by surfacing user-generated content and social design feature from online coding communities. Using this paradigm, we implemented a RAG-based AI chatbot leveraging resources from Kaggle to validate our design. Across two empirical studies involving 28 and 12 data science learners, respectively, we found that Community-Enriched AI significantly enhances user trust, encourages engagement with community, and effectively supports learners in solving data science tasks. We conclude by discussing design implications for AI assistance systems that bridge -- rather than replace -- online coding communities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 7 tweets with 6 likes about this paper.