Papers
Topics
Authors
Recent
2000 character limit reached

FastInsight: Fast and Insightful Retrieval via Fusion Operators for Graph RAG

Published 26 Jan 2026 in cs.IR and cs.AI | (2601.18579v1)

Abstract: Existing Graph RAG methods aiming for insightful retrieval on corpus graphs typically rely on time-intensive processes that interleave LLM reasoning. To enable time-efficient insightful retrieval, we propose FastInsight. We first introduce a graph retrieval taxonomy that categorizes existing methods into three fundamental operations: vector search, graph search, and model-based search. Through this taxonomy, we identify two critical limitations in current approaches: the topology-blindness of model-based search and the semantics-blindness of graph search. FastInsight overcomes these limitations by interleaving two novel fusion operators: the Graph-based Reranker (GRanker), which functions as a graph model-based search, and Semantic-Topological eXpansion (STeX), which operates as a vector-graph search. Extensive experiments on broad retrieval and generation datasets demonstrate that FastInsight significantly improves both retrieval accuracy and generation quality compared to state-of-the-art baselines, achieving a substantial Pareto improvement in the trade-off between effectiveness and efficiency.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 10 likes about this paper.