Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse RBF Networks for PDEs and nonlocal equations: function space theory, operator calculus, and training algorithms

Published 24 Jan 2026 in math.NA and cs.LG | (2601.17562v1)

Abstract: This work presents a systematic analysis and extension of the sparse radial basis function network (SparseRBFnet) previously introduced for solving nonlinear partial differential equations (PDEs). Based on its adaptive-width shallow kernel network formulation, we further investigate its function-space characterization, operator evaluation, and computational algorithm. We provide a unified description of the solution space for a broad class of radial basis functions (RBFs). Under mild assumptions, this space admits a characterization as a Besov space, independent of the specific kernel choice. We further demonstrate how the explicit kernel-based structure enables quasi-analytical evaluation of both differential and nonlocal operators, including fractional Laplacians. On the computational end, we study the adaptive-width network and related three-phase training strategy through a comparison with variants concerning the modeling and algorithmic details. In particular, we assess the roles of second-order optimization, inner-weight training, network adaptivity, and anisotropic kernel parameterizations. Numerical experiments on high-order, fractional, and anisotropic PDE benchmarks illustrate the empirical insensitivity to kernel choice, as well as the resulting trade-offs between accuracy, sparsity, and computational cost. Collectively, these results consolidate and generalize the theoretical and computational framework of SparseRBFnet, supporting accurate sparse representations with efficient operator evaluation and offering theory-grounded guidance for algorithmic and modeling choices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.