Papers
Topics
Authors
Recent
2000 character limit reached

Structure-Aware NL-to-SQL for SFC Provisioning via AST-Masking Empowered Language Models

Published 24 Jan 2026 in cs.NI, cs.CL, and cs.LG | (2601.17295v1)

Abstract: Effective Service Function Chain (SFC) provisioning requires precise orchestration in dynamic and latency-sensitive networks. Reinforcement Learning (RL) improves adaptability but often ignores structured domain knowledge, which limits generalization and interpretability. LLMs address this gap by translating natural language (NL) specifications into executable Structured Query Language (SQL) commands for specification-driven SFC management. Conventional fine-tuning, however, can cause syntactic inconsistencies and produce inefficient queries. To overcome this, we introduce Abstract Syntax Tree (AST)-Masking, a structure-aware fine-tuning method that uses SQL ASTs to assign weights to key components and enforce syntax-aware learning without adding inference overhead. Experiments show that AST-Masking significantly improves SQL generation accuracy across multiple LLMs. FLAN-T5 reaches an Execution Accuracy (EA) of 99.6%, while Gemma achieves the largest absolute gain from 7.5% to 72.0%. These results confirm the effectiveness of structure-aware fine-tuning in ensuring syntactically correct and efficient SQL generation for interpretable SFC orchestration.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.