Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning to Collaborate: An Orchestrated-Decentralized Framework for Peer-to-Peer LLM Federation

Published 23 Jan 2026 in cs.LG, cs.AI, cs.CR, cs.DC, and cs.MA | (2601.17133v1)

Abstract: Fine-tuning LLMs for specialized domains is constrained by a fundamental challenge: the need for diverse, cross-organizational data conflicts with the principles of data privacy and sovereignty. While Federated Learning (FL) provides a framework for collaboration without raw data exchange, its classic centralized form introduces a single point of failure and remains vulnerable to model inversion attacks. Decentralized FL (DFL) mitigates this risk by removing the central aggregator but typically relies on inefficient, random peer-to-peer (P2P) pairings, forming a collaboration graph that is blind to agent heterogeneity and risks negative transfer. This paper introduces KNEXA-FL, a novel framework for orchestrated decentralization that resolves this trade-off. KNEXA-FL employs a non-aggregating Central Profiler/Matchmaker (CPM) that formulates P2P collaboration as a contextual bandit problem, using a LinUCB algorithm on abstract agent profiles to learn an optimal matchmaking policy. It orchestrates direct knowledge exchange between heterogeneous, PEFT-based LLM agents via secure distillation, without ever accessing the models themselves. Our comprehensive experiments on a challenging code generation task show that KNEXA-FL yields substantial gains, improving Pass@1 by approx. 50% relative to random P2P collaboration. Critically, our orchestrated approach demonstrates stable convergence, in stark contrast to a powerful centralized distillation baseline which suffers from catastrophic performance collapse. Our work establishes adaptive, learning-based orchestration as a foundational principle for building robust and effective decentralized AI ecosystems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.