Papers
Topics
Authors
Recent
Search
2000 character limit reached

SpatialBench-UC: Uncertainty-Aware Evaluation of Spatial Prompt Following in Text-to-Image Generation

Published 19 Jan 2026 in cs.AI | (2601.13462v1)

Abstract: Evaluating whether text-to-image models follow explicit spatial instructions is difficult to automate. Object detectors may miss targets or return multiple plausible detections, and simple geometric tests can become ambiguous in borderline cases. Spatial evaluation is naturally a selective prediction problem, the checker may abstain when evidence is weak and report confidence so that results can be interpreted as a risk coverage tradeoff rather than a single score. We introduce SpatialBench-UC, a small, reproducible benchmark for pairwise spatial relations. The benchmark contains 200 prompts (50 object pairs times 4 relations) grouped into 100 counterfactual pairs obtained by swapping object roles. We release a benchmark package, versioned prompts, pinned configs, per-sample checker outputs, and report tables, enabling reproducible and auditable comparisons across models. We also include a lightweight human audit used to calibrate the checker's abstention margin and confidence threshold. We evaluate three baselines, Stable Diffusion 1.5, SD 1.5 BoxDiff, and SD 1.4 GLIGEN. The checker reports pass rate and coverage as well as conditional pass rates on decided samples. The results show that grounding methods substantially improve both pass rate and coverage, while abstention remains a dominant factor due mainly to missing detections.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.