Papers
Topics
Authors
Recent
Search
2000 character limit reached

Content Leakage in LibriSpeech and Its Impact on the Privacy Evaluation of Speaker Anonymization

Published 19 Jan 2026 in eess.AS and cs.SD | (2601.13107v1)

Abstract: Speaker anonymization aims to conceal a speaker's identity, without considering the linguistic content. In this study, we reveal a weakness of Librispeech, the dataset that is commonly used to evaluate anonymizers: the books read by the Librispeech speakers are so distinct, that speakers can be identified by their vocabularies. Even perfect anonymizers cannot prevent this identity leakage. The EdAcc dataset is better in this regard: only a few speakers can be identified through their vocabularies, encouraging the attacker to look elsewhere for the identities of the anonymized speakers. EdAcc also comprises spontaneous speech and more diverse speakers, complementing Librispeech and giving more insights into how anonymizers work.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.