Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Boolean Function-Theoretic Framework for Expressivity in GNNs with Applications to Fair Graph Mining

Published 19 Jan 2026 in cs.LG | (2601.12751v1)

Abstract: We propose a novel expressivity framework for Graph Neural Networks (GNNs) grounded in Boolean function theory, enabling a fine-grained analysis of their ability to capture complex subpopulation structures. We introduce the notion of \textit{Subpopulation Boolean Isomorphism} (SBI) as an invariant that strictly subsumes existing expressivity measures such as Weisfeiler-Lehman (WL), biconnectivity-based, and homomorphism-based frameworks. Our theoretical results identify Fourier degree, circuit class (AC$0$, NC$1$), and influence as key barriers to expressivity in fairness-aware GNNs. We design a circuit-traversal-based fairness algorithm capable of handling subpopulations defined by high-complexity Boolean functions, such as parity, which break existing baselines. Experiments on real-world graphs show that our method achieves low fairness gaps across intersectional groups where state-of-the-art methods fail, providing the first principled treatment of GNN expressivity tailored to fairness.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.