Papers
Topics
Authors
Recent
Search
2000 character limit reached

MedConsultBench: A Full-Cycle, Fine-Grained, Process-Aware Benchmark for Medical Consultation Agents

Published 19 Jan 2026 in cs.AI | (2601.12661v1)

Abstract: Current evaluations of medical consultation agents often prioritize outcome-oriented tasks, frequently overlooking the end-to-end process integrity and clinical safety essential for real-world practice. While recent interactive benchmarks have introduced dynamic scenarios, they often remain fragmented and coarse-grained, failing to capture the structured inquiry logic and diagnostic rigor required in professional consultations. To bridge this gap, we propose MedConsultBench, a comprehensive framework designed to evaluate the complete online consultation cycle by covering the entire clinical workflow from history taking and diagnosis to treatment planning and follow-up Q&A. Our methodology introduces Atomic Information Units (AIUs) to track clinical information acquisition at a sub-turn level, enabling precise monitoring of how key facts are elicited through 22 fine-grained metrics. By addressing the underspecification and ambiguity inherent in online consultations, the benchmark evaluates uncertainty-aware yet concise inquiry while emphasizing medication regimen compatibility and the ability to handle realistic post-prescription follow-up Q&A via constraint-respecting plan revisions. Systematic evaluation of 19 LLMs reveals that high diagnostic accuracy often masks significant deficiencies in information-gathering efficiency and medication safety. These results underscore a critical gap between theoretical medical knowledge and clinical practice ability, establishing MedConsultBench as a rigorous foundation for aligning medical AI with the nuanced requirements of real-world clinical care.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.