Papers
Topics
Authors
Recent
Search
2000 character limit reached

Aletheia: What Makes RLVR For Code Verifiers Tick?

Published 17 Jan 2026 in cs.SE and cs.AI | (2601.12186v1)

Abstract: Multi-domain thinking verifiers trained via Reinforcement Learning from Verifiable Rewards (RLVR) are a prominent fixture of the LLM post-training pipeline, owing to their ability to robustly rate and rerank model outputs. However, the adoption of such verifiers towards code generation has been comparatively sparse, with execution feedback constituting the dominant signal. Nonetheless, code verifiers remain valuable toward judging model outputs in scenarios where execution feedback is hard to obtain and are a potentially powerful addition to the code generation post-training toolbox. To this end, we create and open-source Aletheia, a controlled testbed that enables execution-grounded evaluation of code verifiers' robustness across disparate policy models and covariate shifts. We examine components of the RLVR-based verifier training recipe widely credited for its success: (1) intermediate thinking traces, (2) learning from negative samples, and (3) on-policy training. While experiments show the optimality of RLVR, we uncover important opportunities to simplify the recipe. Particularly, despite code verification exhibiting positive training- and inference-time scaling, on-policy learning stands out as the key component at small verifier sizes, and thinking-based training emerges as the most important component at larger scales.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.