Papers
Topics
Authors
Recent
2000 character limit reached

Skill-Aware Data Selection and Fine-Tuning for Data-Efficient Reasoning Distillation

Published 15 Jan 2026 in cs.CL | (2601.10109v1)

Abstract: Large reasoning models such as DeepSeek-R1 and their distilled variants achieve strong performance on complex reasoning tasks. Yet, distilling these models often demands large-scale data for supervised fine-tuning (SFT), motivating the pursuit of data-efficient training methods. To address this, we propose a skill-centric distillation framework that efficiently transfers reasoning ability to weaker models with two components: (1) Skill-based data selection, which prioritizes examples targeting the student model's weaker skills, and (2) Skill-aware fine-tuning, which encourages explicit skill decomposition during problem solving. With only 1,000 training examples selected from a 100K teacher-generated corpus, our method surpasses random SFT baselines by +1.6% on Qwen3-4B and +1.4% on Qwen3-8B across five mathematical reasoning benchmarks. Further analysis confirms that these gains concentrate on skills emphasized during training, highlighting the effectiveness of skill-centric training for efficient reasoning distillation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.