Papers
Topics
Authors
Recent
Search
2000 character limit reached

SPRInG: Continual LLM Personalization via Selective Parametric Adaptation and Retrieval-Interpolated Generation

Published 15 Jan 2026 in cs.AI and cs.CL | (2601.09974v1)

Abstract: Personalizing LLMs typically relies on static retrieval or one-time adaptation, assuming user preferences remain invariant over time. However, real-world interactions are dynamic, where user interests continuously evolve, posing a challenge for models to adapt to preference drift without catastrophic forgetting. Standard continual learning approaches often struggle in this context, as they indiscriminately update on noisy interaction streams, failing to distinguish genuine preference shifts from transient contexts. To address this, we introduce SPRInG, a novel semi-parametric framework designed for effective continual personalization. During training, SPRInG employs drift-driven selective adaptation, which utilizes a likelihood-based scoring function to identify high-novelty interactions. This allows the model to selectively update the user-specific adapter on drift signals while preserving hard-to-learn residuals in a replay buffer. During inference, we apply strict relevance gating and fuse parametric knowledge with retrieved history via logit interpolation. Experiments on the long-form personalized generation benchmark demonstrate that SPRInG outperforms existing baselines, validating its robustness for real-world continual personalization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.